Вихревое электрическое поле явление самоиндукции. Вихревое электрическое поле. Закон электромагнитной индукции

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.

Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

где R - сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле - создается неподвижными электрическими зарядами, силовые линии поля разомкнуты - -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле (вихревое электр. поле) - вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.


Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах - магнитных изоляторах вихревые токи практически не возникают.


Использование вихревых токов

Нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

Это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.




Электромагнитное поле - Класс!ная физика


Любознательным

Сальто-мортале жука-щелкуна

Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25, при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается в воздухе и приземляется уже на ноги. 400 g - удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности, которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?

Оказывается...
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться, чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.

Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.

Тема: Электромагнитная индукция

Урок: Вихревое электрическое поле

Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.

Закон электромагнитной индукции

При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.

Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта - вихревого электрического поля .

Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток - значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.

Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.

Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).


Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым - таким же, как и магнитное поле.

Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.

Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, - ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.

В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Электронный учебник физики ().
  2. Классная физика ().
  3. Xvatit.com ().
  1. Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
  2. * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков - 4 см?

«Физика - 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией .

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля , созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.


Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: w м ~ В 2 ,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w э ~ Е 2 .

Магнитный поток Ф= BS cos . Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом электромагнитной индукции, но происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8).

Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем - это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.

Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.



Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление электромагнитной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла - минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каждой пластине.

При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.

Явление электромагнитной индукции было открыто М. Фарадеем в 1831 г. Явление можно наблюдать на следующих опытах. Возьмем катушку с большим числом витков (соленоид), замкнем ее с гальванометром, и будем вдвигать с одного из ее концов вдоль оси постоянный магнит. При этом в соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Этот ток прекратится при прекращении движения магнита. Если удалять магнит из соленоида, то в соленоиде снова возникнет ток, но уже противоположного направления. Это же явление будет иметь место, если магнит оставить неподвижным, а перемещать соленоид. Вместо магнита можно взять второй соленоид (рис. 51 ), по которому течет постоянный ток формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=".

Явление электромагнитной индукции заключается в следующем: во всяком замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром, возникает электрический ток. Этот ток называется индукционным.

Возникновение индукционного тока в замкнутом контуре обусловлено появлением в этом контуре под влиянием изменяющегося со временем потока опред-е">электродвижущей силы ЭДС. Величина этой ЭДС была впервые связана со скоростью изменения потока магнитной индукции Фарадеем

опред-е">закон Фарадея

Знак минус в законе означает, что ЭДС индукции всегда имеет такое направление, что препятствует причине, которая ее вызывает. Это правило установил петербургский профессор Э.Х. Ленц.

Если рассмотреть магнитный поток формула" src="http://hi-edu.ru/e-books/xbook785/files/108-2.gif" border="0" align="absmiddle" alt=" (рис. 52, б ), либо направлен противоположно ему, если он возрастает пометка">В . Поток магнитной индукции через площадь S, ограниченную рамкой, равен

формула" src="http://hi-edu.ru/e-books/xbook785/files/109-1.gif" border="0" align="absmiddle" alt=" угол между нормалью к рамке и вектором В изменяется

формула" src="http://hi-edu.ru/e-books/xbook785/files/109-3.gif" border="0" align="absmiddle" alt=" Согласно закону Фарадея (12.1), при изменяющемся потоке сквозь рамку в ней возникает индукционный ток, который будет изменяться со временем с частотой, равной скорости вращения рамки формула" src="http://hi-edu.ru/e-books/xbook785/files/109-4.gif" border="0" align="absmiddle" alt="

Как видно, ЭДС индукции изменяется по гармоническому закону с частотой формула" src="http://hi-edu.ru/e-books/xbook785/files/109-5.gif" border="0" align="absmiddle" alt=" Получение ЭДС при вращении витка в магнитном поле лежит в основе работы генератора переменного тока.

Механизм возникновения индукционного тока в движущемся проводнике можно объяснить с помощью силы Лоренца F = qvB.

Под действием силы Лоренца происходит разделение зарядов: положительные накапливаются на одном конце проводника, отрицательные - на другом (рис. 53 ). Эти заряды создают внутри проводника электростатическое кулоновское поле. Если проводник разомкнут, то движение зарядов под действием силы Лоренца будет происходить до тех пор, пока электрическая сила не уравновесит силу Лоренца. Действие силы Лоренца аналогично действию некоторого электрического поля, это поле является сторонним полем.

Возникновение ЭДС индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Какова же природа сторонних сил (неэлектростатического происхождения) в данном случае?

Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Это поле характеризуется напряженностью (индекс указывает на причину возникновения этого поля - магнитного поля).

Циркуляция этого электрического поля пометка">L не равна нулю:

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-1.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-2.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/111-5.gif" border="0" align="absmiddle" alt=" - частная производная индукции В по времени.

Для электростатического поля пометка">Q ) циркуляция вдоль любого замкнутого контура равна нулю:

опред-е">потенциальным.

Электрическое поле опред-е">вихревым, для него циркуляция вдоль замкнутого контура L не равна нулю:

пометка">I(t), то он создает магнитное поле с индукцией B(t), а следовательно, и поток формула" src="http://hi-edu.ru/e-books/xbook785/files/112.gif" border="0" align="absmiddle" alt="

Явление электромагнитной индукции, вызванное изменением тока в самом контуре, называют самоиндукцией. Ее первопричиной является изменение тока в контуре, которое легче измерить, чем изменение магнитного потока.

В любой точке поверхности, натянутой на контур, индукция dB пропорциональна току в контуре. Если ее проинтегрировать по всей поверхности, то полный магнитный поток пометка">I

пометка">L - индуктивность контура, коэффициент пропорциональности, зависящий от конфигурации контура.

Индуктивность показывает, какой магнитный поток пронизывает поверхность, охваченную контуром, при силе тока в нем 1 А. Ее единица - Вб/А, которая называется генри (Гн).

Если контур имеет сложную форму, например, содержит несколько витков, то вместо опред-е">потокосцепление формула" src="http://hi-edu.ru/e-books/xbook785/files/112-4.gif" border="0" align="absmiddle" alt="

выражение справедливо при L = const.

Из него следует еще одно определение L (более важное на практике): индуктивность показывает, какая ЭДС самоиндукции возникает в контуре, если скорость изменения силы тока в нем составляет 1 А/с.

Для соленоида магнитный поток через один виток пометка">N витков соленоида (потокосцепление),

пометка">V =Sl - объем соленоида.

Сравнивая это выражение с (12.4) , получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/mu.gif" border="0" align="absmiddle" alt=".

Магнитный поток сквозь поверхность, охваченную контуром 2, может быть создан током иллюстрация" src="http://hi-edu.ru/e-books/xbook785/files/ris54.gif" border="0">

Обозначим формула" src="http://hi-edu.ru/e-books/xbook785/files/113.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook785/files/I1.gif" border="0" align="absmiddle" alt=" изменяется, то в контуре 2 индуцируется ЭДС взаимной индукции

формула" src="http://hi-edu.ru/e-books/xbook785/files/I2.gif" border="0" align="absmiddle" alt=" возникает ЭДС взаимной индукции

формула" src="http://hi-edu.ru/e-books/xbook785/files/113-3.gif" border="0" align="absmiddle" alt=" - взаимные индуктивности контуров, они зависят от геометрической формы, размеров, взаимного расположения контуров и магнитной проницаемости среды.

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник (рис. 55 ). токами Фуко, или вихревыми токами.

Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка останавливается, если включить постоянный ток, питающий электромагнит. Вся ее энергия превращается в тепло, выделяемое токами Фуко. В неподвижной пластинке токи отсутствуют.

Вихревые токи могут быть значительно ослаблены, если в пластинке сделать разрезы, увеличивающие ее сопротивление. В сплошных сердечниках трансформаторов, электромоторов, работающих на переменном токе, токи Фуко выделяли бы значительное количество тепла. Поэтому сердечники делают наборными, составляя их из тонких пластин, разделенных слоем диэлектрика.

Явление возникновения индукционных токов Фуко лежит в основе работы индукционных печей, которые позволяют разогревать металлы до температуры плавления.

Токи Фуко подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Этот факт используется для успокоения подвижных частей различных приборов (демпфирование).

Вихревые токи возникают и в проводах, по которым течет переменный электрический ток. Направление вихревых токов таково, что они противодействуют изменению первичного тока в проводнике. Таким образом, переменный ток оказывается распределенным по сечению провода неравномерно, он как бы вытесняется на поверхность проводника. У поверхности провода плотность тока максимальна, а в глубь проводника убывает и достигает наименьшего значения на его оси. Это явление называют скин-эффектом (skin - кожа). Ток концентрируется в «кожице» проводника. Поэтому при больших частотах нет надобности в проводниках большого сечения: все равно ток будет идти лишь в поверхностном слое.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: