Кем и как установлена гравитационная постоянная. Гравитационная постоянная теряет вес. "Гравитационная постоянная" в книгах


Гравитационная постоянная

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - коэффициент пропорциональности G в ф-ле, описывающей закон всемирного тяготения Ньютона,

где F - сила, с к-рой точечные массы m 1 и m 2 , находящиеся на расстоянии r друг от друга, взаимно притягиваются.

Численное значение и размерность Г. п. зависят от выбора единиц массы, длины и времени (табл. 1).

Табл. 1. - Значения гравитационной постоянной

Наименование и обозначение Единицы Численное значение
длина масса время
Кавендишева Г.п. *, G м кг с (6,6745+ 0,0008) . 10 -11 м 3 /(кг . с 2)
Геоцентрическая Г.п., м масса Земли с (398 600,5+ 0,3) . 10 9 м 3 /с 2
Гелиоцентрическая Г.п., м масса Солнца с (132 712 438+ 5) . 10 12 м 3 /с 2
Селеноцентрическая Г.п., м масса Луны с (4902,7+ 0,1) . 10 9 м 3 /с 2
Гауссова Г.п., k а.е. масса Солнца эфемеридные сутки 0,01720209895
Эйнштейнова Г.п., м кг - (1,8664+ 0,0002) . 10 -26 м/кг
* Значение Г.п. приведено по определениям ГАИШ.

Г. п. G, имеющую размерность [L] 3 [M] -1 [T] -2 , где масса М, длина L и время Т выражены в единицах Международной системы единиц (СИ), иногда называют кавендишевой Г. п. в честь англ. учёного Г. Кавендиша, к-рый в 1798 г. впервые в лабораторном эксперименте с крутильными весами определил значение G. Все лабораторные эксперименты по определению G можно условно разделить на две группы.

В первой группе экспериментов сила гравитац. взаимодействия сравнивается с упругой силой нити горизонтальных крутильных весов. Они представляют собой лёгкое коромысло, на концах к-рого укреплены пробные массы. За середину коромысло подвешено на тонкой упругой нити. Величина гравитац. взаимодействия определяется по углу закручивания нити (статич. метод), вызванному притяжением пробных масс к расположенным вблизи эталонным массам.

Во второй группе сила гравитац. взаимодействия между пробными и эталонными массами сравнивается с силой тяжести, для чего используются рычажные весы. Этим способом Г. п. была впервые определена нем. физиком Ф. Йолли в 1878 г. Впоследствии опыты Кавендиша и Йолли неоднократно повторялись, однако в наше время они представляют лишь исторический интерес.

Значение Г. п., включённое Международным астрономическим союзом (MAC) в Систему астрономических постоянных (САП) 1976 г., к-рым продолжают пользоваться, получено с помощью крутильных весов в 1942 г. П. Хейлом и П. Хржановским (США).

В СССР Г. п. впервые была определена в Государственном астрономическом институте имени П. К. Штернберга (ГАИШ) в 1975-78 гг. Как и в экспериментах Хейла и Хржановского, был применён динамич. метод, сущность к-рого состоит в следующем. Частота крутильных колебаний w горизонтальных весов в гравитац. поле эталонных масс определяется выражением:

Частота w измеряется в процессе эксперимента, величины m и J могут быть вычислены. Коэфф. m зависит от размеров и плотностей эталонных масс и крутильных весов, а также от их взаимного расположения. Момент инерции крутильных весов J определяется их геометрич. размерами и массой. Остаются два неизвестных параметра - крутильная жесткость t и Г. п. Поэтому для исключения t и определения G нужно иметь два таких ур-ния (т. е. провести измерения w по крайней мере для двух различных положений эталонных масс). Т. о., для определения Г. п. динамич. методом необходимо произвести измерения: 1) геометрич. размеров и плотностей эталонных масс и крутильных весов; 2) положения эталонных масс относительно крутильных весов; 3) частот крутильных колебаний при различных положениях эталонных масс.

На рис. приведена схема экспериментальной установки ГАИШ. Т. к. параметры, приведённые в пункте 1), не меняются от эксперимента к эксперименту, то их измерение достаточно провести один раз для всех экспериментов. Измерения остальных параметров должны производиться в каждом эксперименте. Т. о., для получения одного значения Г. п. при разных положениях эталонных масс (перестановка эталонных масс в процессе эксперимента производится автоматически) определяются расстояния между эталонными и пробными массами (с помощью прибора для линейных измерений), а фотоэлектрич. система регистрации измеряет частоту крутильных колебаний. Такие эксперименты повторяются многократно, поэтому для уменьшения случайных погрешностей вычисляют ср. значение Г. п. и его среднеквадратическую погрешность.

Во всех совр. определениях Г. п. (кавендишевой) были использованы крутильные весы. Помимо собственно динамич. метода применялись также его модификации - резонансный и ротационный методы. В резонансном методе эталонные массы вращаются вокруг оси крутильной нити с частотой, равной частоте собственных колебаний весов, что приводит к резонансному возбуждению крутильных колебаний. По изменению амплитуды колебаний можно судить о величине Г. п. В ротационном методе платформа, на к-рой установлены крутильные весы и эталонные массы, вращается вокруг вертикальной оси. Г. п. определяется по измерениям ускорения платформы, а также постоянного угла поворота крутильных весов относительно эталонных масс.

Результаты совр. определений Г. п. приведены в табл. 2. Среднеквадратические погрешности измерений указывают на внутр. сходимость каждого результата. Лучшие из них (три последних результата) не перекрываются между собой в доверительных интервалах. Это связано с тем, что определение кавендишевой Г. п. требует проведения абс. измерений, и поэтому в отдельных результатах возможны систематич. погрешности. Очевидно, значение Г. п. может быть достоверным только при учёте различных определений Г. п., полученных разными методами.

Табл.2. - Результаты современных определений кавендишевой гравитационной постоянной.

Авторы, место проведения измерений, год публикации Метод Значение Г.п., 10 -11 м 3 /(кг . с 2)
Хейл, Хржановский (США), 1942 Динамический 3,373+ 0,005
Роуз, Паркер, Бимс и др. (США), 1969 Ротационный 6,674+ 0,004
Реннер (Венгрия), 1970 Динамический 6,670+ 0,008
Фаси, Понтикис, Лукас(Франция), 1972 Резонансный 6,6714+ 0,0006
Сагитов, Милюков, Монахов и др. (1978) Динамический 6,6745+ 0,0008
Лютер, Тоулер (США), 1982 Динамический 6,6726+ 0,0005

Г. п., выраженные в астрономич. единицах, определяются на основании астрономич. наблюдений и 3-го закона Кеплера, к-рый явл. следствием закона тяготения (1).

Геоцентрическая Г. п. (равная произведению кавендишевой Г. п. на массу Земли ) используется при расчётах движения в поле тяготения Земли небесных тел, как естественных, так и искусственных. Наиболее точно геоцентрич. Г. п. определяется по наблюдениям ИСЗ или КА, направляемых к др. планетам, т. к. на их движение меньше влияет неоднородность плотности Земли и неправильность её фигуры.

Аналогично гелиоцентрическая, селеноцентрическая и др. планетоцентрические Г. п. предназначены для расчёта движения в гравитац. полях соответственно Солнца, Луны и планет. В астрономии применяется и иной подход к определению Г. п. Ей априорно приписывается нек-рое фиксированное значение; две из трёх физ. величин (масса и время), задающих размерность Г. п., определяются из наблюдений, тогда ед. длины становится производной величиной. Так вводится гауссова Г. п. k . По мере уточнения массы Солнца (ед. массы) и эфемеридных суток (ед. времени) изменяется величина а. е.

Эйнштейнова Г. п. используется в теоретич. физике. Она связана с кавендишевой Г. п. соотношением: .

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) А. Эйнштейна Г. п. рассматривается как универсальная константа природы, не изменяющаяся в пространстве и времени и не зависящая от физ. и хим. св-в среды и гравитирующих масс. Существуют варианты теории гравитации, имеющие в слабых полях одинаковый ньютоновский предел, но дающие ряд предсказаний, отличных от предсказаний ОТО, в т. ч. переменность Г. п. Напр., теория П. Дирака, созданная ещё в 1930-е гг., предсказывает изменение Г. п. (D G) со временем на величину ~D G/G » 6 . 10 -11 в год. Нек-рые варианты теории гравитации предполагают зависимость Г. п. от расстояния между притягивающимися телами. Однако имеющиеся наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить это гипотетич. изменение Г. п.

Лит .: Сагитов М. У., Постоянная тяготения и масса Земли, М., 1969; Новое определение кавендишевой гравитационной постоянной, "ДАН СССР", 1979, т. 245, № 3, с. 567-69; Абалакин В. К., Основы афемеридной астрономии, М., 1979.

(В.К. Милюков, М.У. Сагитов )


Для объяснения наблюдаемой эволюции Вселенной в рамках существующих теорий, приходится допустить, что одни фундаментальные постоянные более постоянны, чем другие

В ряду фундаментальных физических констант - скорость света, постоянная Планка, заряд и масса электрона - гравитационная постоянная стоит как-то особняком. Даже история её измерения изложена в знаменитых энциклопедиях Britannica и Larousse , не говоря уж о «Физической энциклопедии» , с ошибками. Из соответствующих статей в них читатель узнает, что её численное значение впервые определил в прецизионных экспериментах 1797–1798 годов знаменитый английский физик и химик Генри Кавендиш (Henry Cavendish , 1731–1810), герцог Девонширский. В действительности Кавендиш измерял среднюю плотность Земли (его данные, кстати, всего лишь на полпроцента отличаются от результатов современных исследований). Располагая же информацией о плотности Земли, мы легко можем вычислить её массу, а зная массу, определить гравитационную постоянную.

Интрига состоит в том, что во времена Кавендиша понятия гравитационной постоянной ещё не существовало, и закон всемирного тяготения не принято было записывать в привычном для нас виде. Напомним, что сила тяготения пропорциональна произведению масс тяготеющих тел и обратно пропорциональна квадрату расстояния между этими телами, коэффициентом же пропорциональности как раз и является гравитационная постоянная. Такая форма записи ньютоновского закона появляется только в XIX столетии. А первые опыты, в которых измерялась именно гравитационная постоянная, были выполнены уже в конце столетия - в 1884 году.

Как отмечает российский историк науки Константин Томилин , гравитационная постоянная отличается от других фундаментальных постоянных ещё и тем, что с ней не связан естественный масштаб какой-либо физической величины. В то же время скорость света определяет предельное значение скорости, а постоянная Планка - минимальное изменение действия.

И только в отношении гравитационной постоянной была высказана гипотеза о том, что её численное значение, возможно, меняется со временем. Впервые эту идею сформулировал в 1933 году английский астрофизик Эдвард Милн (Edward Arthur Milne , 1896–1950), а в 1937 году знаменитый английский физик-теоретик Поль Дирак (Paul Dirac , 1902–1984), в рамках так называемой «гипотезы больших чисел», предположил, что гравитационная постоянная уменьшается с течением космологического времени. Гипотеза Дирака занимает важное место в истории теоретической физики ХХ века, однако никаких более или менее надежных экспериментальных подтверждений её не известно.

С гравитационной постоянной непосредственно связана так называемая «космологическая постоянная», впервые появившаяся в уравнениях общей теории относительности Альберта Эйнштейна . Обнаружив, что эти уравнения описывают либо расширяющуюся, либо сжимающуюся вселенную, Эйнштейн искусственно добавил в уравнения «космологический член», обеспечивавший существование стационарных решений. Его физический смысл сводился к существованию силы, компенсирующей силы всемирного тяготения и проявляющейся лишь на очень больших масштабах. Несостоятельность модели стационарной Вселенной стала для Эйнштейна очевидной после выхода в свет работ американского астронома Эдвина Хаббла (Edwin Powell Hubble , 1889–1953) и советского математика Александра Фридмана , доказавших справедливость иной модели, согласно которой Вселенная расширяется во времени . В 1931 году Эйнштейн отказался от космологической постоянной, назвав её в частной беседе «величайшей ошибкой своей жизни».

История, однако, на этом не закончилась. После того как было установлено, что последние пять миллиардов лет расширение Вселенной происходит с ускорением , вопрос о существовании антигравитации вновь стал актуальным; вместе с ним в космологию вернулась и космологическая постоянная. При этом современные космологи связывают антигравитацию с присутствием во Вселенной так называемой «темной энергии» .

И гравитационная постоянная, и космологическая постоянная, и «темная энергия» были предметом активных дискуссий на недавней конференции в Имперском Колледже Лондона (London Imperial College), посвященной нерешенным проблемам в стандартной модели космологии. Одна из наиболее радикальных гипотез была сформулирована в докладе Филиппа Мангейма (Philip Mannheim) - специалиста по физике элементарных частиц из университета Коннектикута в Шторсе (University of Connecticut in Storrs). Фактически Мангейм предложил лишить гравитационную постоянную статуса универсальной постоянной. Согласно его гипотезе, «табличное значение» гравитационной постоянной определено в лаборатории, находящейся на Земле, и им можно пользоваться только в пределах Солнечной системы . В космологических же масштабах гравитационная постоянная имеет другое, существенно меньшее численное значение, которое можно рассчитать методами физики элементарных частиц.

Представляя свою гипотезу коллегам, Мангейм прежде всего стремился приблизить решение весьма актуальной для космологии «проблемы космологической постоянной». Суть этой проблемы в следующем. По современным представлениям, космологическая постоянная характеризует скорость расширения Вселенной. Её численное значение, найденное теоретически методами квантовой теории поля, в 10 120 раз превышает полученное из наблюдений. Теоретическое значение космологической постоянной столь велико, что при соответствующей скорости расширения Вселенной звезды и галактики просто не успели бы сформироваться.

Свою гипотезу о существовании двух разных гравитационных постоянных - для солнечной системы и для межгалактических масштабов - Мангейм обосновывает следующим образом. По его словам, в наблюдениях на самом деле определяется не сама космологическая постоянная, а некоторая величина, пропорциональная произведению космологической постоянной на гравитационную постоянную. Предположим, что в межгалактических масштабах гравитационная постоянная очень мала, а значение космологической постоянной соответствует расчетному и очень велико. В этом случае произведение двух постоянных вполне может быть малой величиной, что не противоречит наблюдениям. «Возможно, пришло время отказаться считать космологическую постоянную малой величиной, - говорит Мангейм, - просто принять, что она велика, и исходить из этого». В этом случае «проблема космологической постоянной» оказывается решенной.

Предлагаемое Мангеймом решение выглядит простым, но цена, которую придется заплатить за него, очень велика. Как отмечает Зейя Мерали (Zeeya Merali) в статье «Two constants are better than one», опубликованной журналом New scientist 28 апреля 2007 года, вводя два разных численных значения гравитационной постоянной, Мангейм неизбежно должен отказаться от уравнений общей теории относительности Эйнштейна. Кроме того, гипотеза Мангейма делает излишним принятое большинством космологов представление о «темной энергии», поскольку малое значение гравитационной постоянной на космологических масштабах уже само по себе эквивалентно предположению о существовании антигравитации.

Кейт Хорн (Keith Horne) из британского университета св. Андрея (University of St Andrew) приветствует гипотезу Мангейма, поскольку в ней использованы фундаментальные принципы физики элементарных частиц: «Она очень элегантна, и было бы просто замечательно, если бы она оказалась правильной». По словам Хорн, в этом случае нам удалось бы объединить физику элементарных частиц и теорию гравитации в одну весьма привлекательную теорию.

Но с ней согласны далеко не все. New Scientist приводит и мнение космолога Тома Шэнкса (Tom Shanks), что некоторые явления, очень хорошо укладывающиеся в стандартную модель, - например, недавние измерения реликтового излучения , и движения двойных пульсаров, - вряд ли окажутся так же легко объяснимы в теории Мангейма.

Сам Мангейм не отрицает проблем, с которыми сталкивается его гипотеза, замечая при этом, что считает их намного менее значимыми в сравнении с трудностями стандартной космологической модели: «Её разрабатывают сотни космологов, и тем не менее она неудовлетворительна на 120 порядков».

Надо отметить, что Мангейм нашел некоторое количество сторонников, поддержавших его, дабы исключить худшее. К худшему они отнесли выдвинутую в 2006 году гипотезу Пола Штейнхарда (Paul Steinhardt) из Принстонского университета (Princeton University) и Нила Тьюрока (Neil Turok) из Кембриджа (Cambridge University), согласно которой Вселенная периодически рождается и исчезает, причем в каждом из циклов (длящемся триллион лет) происходит свой Большой Взрыв , и при этом в каждом цикле численное значение космологической постоянной оказывается меньше, нежели в предыдущем. Крайне незначительная величина космологической постоянной, зафиксированная в наблюдениях, означает тогда, что наша Вселенная - очень дальнее звено в очень длинной цепи рождающихся и исчезающих миров…

Гравитационная константа Ньютона измерена методами атомной интерферометрии. Новая методика свободна от недостатков чисто механических экспериментов и, возможно, позволит скоро изучать эффекты общей теории относительности в лаборатории.

Фундаментальные физические постоянные, такие как скорость света c , гравитационная постоянная G , постоянная тонкой структуры α, масса электрона и другие, играют чрезвычайно важную роль в современной физике. Заметная часть экспериментальной физики посвящена как можно более точному измерению их значений и проверке того, не изменяются ли они во времени и пространстве. Даже малейшие подозрения в непостоянности этих констант могут породить целый поток новых теоретических исследований и пересмотр общепринятых положений теоретической физики. (См. популярную статью Дж. Бэрроу и Дж. Веба Непостоянные постоянные // «В мире науки», сентябрь 2005 г., а также подборку научных статей , посвященных возможной непостоянности констант взаимодействия.)

Большинство фундаментальных констант известны сегодня с чрезвычайно высокой точностью. Так, масса электрона измерена с точностью 10 -7 (то есть стотысячная доля процента), а постоянная тонкой структуры α, характеризующая силу электромагнитного взаимодействия, — с точностью 7 × 10 -10 (см. заметку Уточнена постоянная тонкой структуры). В свете этого может показаться удивительным, что значение гравитационной постоянной, которая входит в закон всемирного тяготения , известно с точностью хуже, чем 10 -4 , то есть одна сотая доля процента.

Такое положение вещей отражает объективные трудности гравитационных экспериментов. Если пытаться определить G из движения планет и спутников, то необходимо с высокой точностью знать массы планет, а они-то как раз известны плохо. Если же поставить механический эксперимент в лаборатории, например измерить силу притяжения двух тел с точно известной массой, то такое измерение будет иметь большие погрешности из-за чрезвычайной слабости гравитационного взаимодействия.

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r 2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: γ или f (реже k 2 ). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц (См. СГС система единиц)

G = (6,673 ± 0,003)․10 -8 дн см 2 г -2

или см 3 г --1 сек -2 , в Международной системе единиц (См. Международная система единиц)

G = (6,673 ± 0,003)․10 -11 ․н м 2 кг --2

или м 3 кг -1 сек -2 . Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов (См. Крутильные весы).

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003)․10 14 ․м 3 сек -2 .

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. - произведение Г. п. на массу Солнца:

GS s = 1,32718․10 20 ․ м 3 сек -2 .

Эти значения GE и GS s соответствуют системе фундаментальных астрономических постоянных (См. Фундаментальные астрономические постоянные), принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

  • - , физ. величина, характеризующая св-ва тела как источника тяготения; равна инертной массе. ...

    Физическая энциклопедия

  • - нарастание со временем отклонений от ср. значения плотности и скорости движения в-ва в косм. пр-ве под действием сил тяготения...

    Физическая энциклопедия

  • - нарастание возмущений плотности и скорости вещества в первоначально почти однородной среде под действием гравитационных сил. В результате гравитационной неустойчивости образуются сгустки вещества...

    Астрономический словарь

  • - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды...

    Мир Лема - словарь и путеводитель

  • - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести...

    Словарь геологических терминов

  • - вода свободная. Она передвигается под влиянием силы тяжести, в ней действует гидродинамическое давление...

    Словарь по гидрогеологии и инженерной геологии

  • - Влага свободная, передвигающаяся или способная к передвижению в п. или грунте под влиянием силы тяжести...

    Толковый словарь по почвоведению

  • - тяготения постоянная, - универс. физ. постоянная G, входящая в ф-лу, выражающую ньютоновский закон тяготения: G = *10-11Н*м2/кг2...

    Большой энциклопедический политехнический словарь

  • - местная ликвация по высоте слитка, связанная с различием в плотности твердой и жидкой фаз, а также не смешивающихся при кристаллизации жидких фаз...
  • - шахтная печь, в которой нагреваемый материал движется сверху вниз под действием силы тяжести, а газообразный теплоноситель - встречно...

    Энциклопедический словарь по металлургии

  • - син. термина аномалия силы тяжести...

    Геологическая энциклопедия

  • - см. в ст. Свободная вода....

    Геологическая энциклопедия

  • - масса, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...
  • - то же, что Отвесная линия...

    Большая Советская энциклопедия

  • - тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...

    Большая Советская энциклопедия

  • - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами...

    Большая Советская энциклопедия

"Гравитационная постоянная" в книгах

автора Еськов Кирилл Юрьевич

автора

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Постоянная забота

Из книги Листы дневника. Том 1 автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

6.10. Гравитационная редукция вектора состояния

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

6.10. Гравитационная редукция вектора состояния Есть веские причины подозревать, что модификация квантовой теории - необходимая, если мы намерены выдать ту или иную форму R за реальный физический процесс, - должна самым серьезным образом задействовать эффекты

Аналогия с вулканом: гравитационная и центробежная энергии

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Аналогия с вулканом: гравитационная и центробежная энергии Чтобы объяснить, как этот вулкан связан с законами физики, придется слегка углубиться в технические детали.Для простоты будем считать, что «Эндюранс» движется в экваториальной плоскости Гаргантюа.

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова)

Из книги 100 великих тайн Второй мировой автора Непомнящий Николай Николаевич

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова) В начале 1920-х годов в Германии была опубликована статья доцента Кёнигсбергского университета Т. Калуцы о «теории великого объединения», в которой он сумел опередить Эйнштейна, работавшего в то время

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Гравитационная

БСЭ

Гравитационная вертикаль

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная плотина

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная постоянная

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Способности кристаллов. Гравитационная подпитка

Из книги Энергия камня исцеляет. Кристаллотерапия. С чего начать? автора Бриль Мария

Способности кристаллов. Гравитационная подпитка Природные элементы, на протяжении миллионов лет выкристаллизовывавшиеся в глубинах земных недр, обладают особыми свойствами, позволяющими им максимально реализовать свои способности. А способности эти не так уж и малы.

Правило «Гравитационная горка»

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

Правило «Гравитационная горка» Мы уже договорились: все есть мысль; мысль есть Сила; движение Силы – волна. Поэтому боевое взаимодействие по сути не отличается от стирки белья. В обоих случаях имеет место волновой процесс.Вам надо усвоить, что волновой процесс жизни

Гравитационная постоянная, постоянная Ньютона - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века.

Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809). По крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Митчеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной

см 3 г -1 c -2 , с погрешностью 0,0014%.

Последнее значение гравитационной постоянной было получено группой ученых в 2013, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет

см 3 г -1 c -2 .

В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени, но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, ее относительное изменение не превышает 10 ?11 - 10 ?12 в год.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами m 1 и m 2 , находящимися на расстоянии r , равна:

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428 (67)·10 ?11 м 3 ·с?2 ·кг?1

в 2010 году значение было исправлено на:

G = 6,67384 (80)·10 ?11 м 3 ·с?2 ·кг?1 , или Н·мІ·кг?2 .

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234 (14), что на три стандартных отклонения меньше величины G , рекомендованной в 2008 г. комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г.

Пересмотр величины G , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: