Методика определения свинца в воде. Определение свинца методом фотоколориметрии. II. Реактивы и аппаратура

Цель работы: определение свинца в водном объекте колориметрическим методом.

Источником свинца в поверхностных водах могут служить стоки некоторых химических производств, фабрик и т.д.

Оборудование и реактивы

– пробирки колориметрические;

– 50 %-ный раствор сегнетовой соли;

– аммиак водный концентрированный;

– 0,1%-ный раствор диэтилдитиокарбамата натрия;

– крахмал, 0,25%-ный раствор.

Выполнение работы

1. В пробирку наливают 10 мл исследуемой воды, добавляют 2 капли 50 % -го раствора сегнетовой соли, 4 капли прозрачного раствора крахмала, 1 мл водного аммиака.

2. После перемешивания к раствору добавляют 1 мл раствора диэтилдитиокарбамата натрия. При наличии ионов свинца возникает помутнение раствора или выпадает белый осадок, в зависимости от концентрации.

Таблица. Зависимость характера помутнения раствора от концентрации свинца

Характер помутнения

Концентрация
свинца, мг/л

Помутнение отсутствует или едва заметно

Слабое помутнение

Заметное помутнение

Сильное помутнение

Таблица. Форма записи результатов определение свинца в водном объекте колориметрическим методом

Проба

Место отбора

Характер

помутнения

Концентрация свинца, мг/л

3. Сделать выводы о содержании свинца в пробе воды.

Сера

Восстановительные свойства серы

Налить в пробирку 2-3 мл концентрированной азотной кислоты, всы-пать немного порошка серы и нагревать смесь до кипения. К оставшемуся раствору прибавить раствор хлорида бария. На наличие какого иона указы-вает образование белого осадка? Составьте уравнение реакции окисления серы азотной кислотой.

Восстановительные свойства тиосульфата

К 2-3 мл раствора тиосульфата натрия прилить 1 мл раствора крахмала и приливать по каплям раствор йода. Почему не получается синего окраши-вания? Составьте уравнения реакции между тиосульфатом йода и йодом. К 2 мл раствора тиосульфата прибавить хлорную воду. Что наблюдается? Сос-тавьте уравнения реакции. Докажите, что в растворе имеются ионы SO 4 2- , по-лучающиеся при окислении ионов S 2 O 3 2- .

Окислительные свойства серной кислоты

Испытать действие разбавленной серной кислоты на металлический цинк и концентрированной серной кислоты на металлическую медь при на-гревании. Как определить продукты восстановления серной кислоты? Сос-тавьте уравнения реакций.

Обугливание органических веществ серной кислотой

Стеклянной палочкой, смоченной концентрированной H 2 SO 4 , написать что-нибудь на бумаге. Бумагу слегка прогреть, держа её высоко над пламе-нем. Что наблюдается? Дать объяснение. На кусочек ткани нанести стеклян-ной палочкой каплю концентрированной H 2 SO 4 . Через некоторое время ис-пытать ткань на прочность.

Азот и фосфор

Превращение красного фосфора в белый

В сухую пробирку поместить несколько крупинок красного фосфора, закрыть ватным тампоном и осторожно нагревать на слабом пламени. Наб-людать кристаллизацию вещества на холодных стенках пробирки и описать процесс, лежащий в основе опыта.

Равновесие в растворе аммиака

Отобрать пипеткой 2 мл концентрированного аммиака и разбавить во-дой, содержащей 3-4 капли раствора фенолфталеина, до 50 мл. Разлить окра-шенный раствор в три колбы. Одну поставить на печку кипятить раствор, а в другую высыпать щепотку твердого хлорида аммония и взболтать. Сравнить окраску во всех трех колбах и описать равновесия и смещение равновесия в растворе аммиака.

Образование солей аммония

Стеклянную палочку смочить концентрированной соляной кислотой и поднести к склянке с концентрированным раствором аммиака. Описать наб-людаемые изменения и составить уравнение реакции.

Получение аммиакатов

В двух пробирках получить осадки гидроксидов цинка и никеля и при-лить к ним раствор аммиака. Описать происходящие изменения и составить уравнения реакций.

Окислительные свойства азотной кислоты

В 5 мл дистиллированной воды растворить 3-4 кристалла свежепере-кристаллизованной соли железа (II). Раствор разлить поровну в две пробир-ки. В одну из них добавить 5 капель концентрированной азотной кислоты и кипятить 2-3 мин. После охлаждения прилить в обе пробирки по несколько капель раствора роданида калия и наблюдать за изменением окраски.



Образование азотной кислоты и ее разложение

К 3-4 мл концентрированного раствора NaNO 2 прилить разбавленную серную кислоту. Наблюдать изменение окраски раствора (на фоне белой бу-маги) и записать уравнения реакций.

Реакция открытия азотной кислоты

Налить в пробирку 1 мл насыщенного раствора сульфата железа (II),

3 мл концентрированной серной кислоты, охладить смесь. Наклонив пробир-ку, осторожно влить по стенке 1-2 мл раствора азотной кислоты (1:1). В месте соприкосновения двух жидкостей образуется бурое кольцо SO 4 . Записать уравнение реакции в две стадии: восстановление азотной кислоты до оксида азота (II) и образование комплексного соединения.

2. Металлы

Восстановительные свойства меди:

а) опыт проводить под тягой! Испытать действие разбавленной и концентрированной серной и азотной кислот на металлическую медь на холоде и при нагревании. Записать уравнения проведенных реакций;

б) взять щипцами кусочек медной проволоки и прокалить в муфельной печи. Записать уравнение реакции.

Гидролиз солей меди и серебра:

а) испытать лакмусовой бумагой растворы солей меди (II) и серебра. Отметить и записать уравнения реакций гидролиза;

б) к концентрированному раствору сульфата меди прилить насыщенный раствор соды. Описать реакцию взаимного гидролиза, учитывая, что осаждается основной карбонат меди.

Окислительные свойства иона Си 2+

К раствору сульфата меди (II) добавить раствор йодида калия. При этом образуется белый осадок Cu 2 J 2 и наблюдается пожелтение раствора. Составьте уравнение реакции.

Окрашивание пламени солями меди

Нихромовую проволоку окунуть в раствор хлорида меди (II) и внести в пламя горелки. Фиксировать окрашивание пламени.

Восстановительные свойства цинка

В трёх отдельных пробирках изучить действие воды, соляной кислоты и концентрированного раствора щелочи на металлический цинк. Записать уравнения реакций и предсказать отношение кадмия к этим же реактивам.

Получение гидроксидов

К растворам солей ZnCl 2 , CdCl 2, Hg(NO 3) 2 , Hg 2 (NO 3) 2 прибавить по нес-колько капель раствора щелочи и записать уравнения реакции. Затем ко всем осадкам прилить избыток щелочи, зафиксировать различия в поведении гид-роксидов цинка, кадмия и ртути.

Реактивы и оборудование: 1. ФЭК – 56. 2. Соль свинца. 3. Кислота уксусная (СН 3 СООН). 4. Ацетат натрия (CH 3 COONa). 5. Колбы мерные на 100 мл (7 штук). 6. Бюретка на 25 мл. 7. Кислота азотная (1:2).

8. Ксиленоловый оранжевый (индикатор).

Ход работы

Приготовление буферного раствора с рН 4,5.

Взвешиваем 22,57 г уксуснокислого натрия (СН 3 СООNa . Н 2 О). Добавляем в раствор соли 5,78 мл концентрированной уксусной кислоты и помещаем смесь в мерную колбу ёмкостью 0,5 л, доводя до метки водой, перемешивая.

Приготовление водного раствора ксиленолового оранжевого.

Навеску 0,06725 г ксиленолового оранжевого помещаем в мерную колбу ёмкостью 0,5 л, растворяем в 100 мл воды и доводим до метки водой, перемешивая. Приготовленный раствор имеет концентрацию 2 . 10 - 2 моль /л.

Приготовление стандартного раствора свинца.

Растворяем 1 г металлического свинца (о.с.ч.) в 50 мл азотной кислоты, разбавленной 1:2, и полученный раствор количественно переносим в мерную колбу ёмкостью 1 л, доводя водой до метки.

Для построения калибровочного графика отбираем 20 мл стандартного раствора нитрата свинца в мерную колбу на 200 мл, доводя водой до метки, добавив в колбу 1 мл азотной кислоты (1:2). Раствор имеет концентрацию 10 мкг/мл.

Построение калибровочного графика

В колбы на 100 мл вносим из бюретки 5, 10, 12, 15, 18, 20 мл стандартного раствора нитрата свинца, концентрация которого составляет 10 мкг/мл. Добавляем в каждую колбу 10 мл ацетатного буферного раствора с рН 4,5 и 10 мл раствора ксиленолового оранжевого. Через 15 мин измеряем на фотоэлектрокалориметре оптическую плотность приготовленных растворов, используя светофильтр № 4. Строим калибровочный график в координатах «С Р b (мкг/мл) – оптическая плотность Д».

Определение концентрации свинца в анализируемом растворе . Отбираем из анализируемого раствора объём 10 мл, добавляем 10 мл буферного раствора с рН 4,5 и 10 мл ксиленолового оранжевого с концентрацией 2×10 - 2 моль/л. Доводим до метки водой и через 15 мин измеряем на приборе оптическую плотность. По градуировочному графику находим концентрацию раствора в колбе 100 мл и с учетом разбавления определяем концентрацию свинца в исходном растворе (0 ой раствор – Н 2 О).

Реферат


Курсовая работа содержит: ___ страниц, 4 таблицы, 2 рисунка, 8 литературных источника. Объектом исследования в курсовой работе являются пищевые продукты сложного химического состава.

Цель работы - определить содержание свинца в пищевых продуктах и сравнить с ПДК.

Метод исследования - атомно-абсорбционный.

Приведены способы пробоподготовки. Проанализированы и обобщены данные по содержанию соединений свинца в пищевых объектах (объектов).

Область применения - аналитическая и токсикологическая химия, лаборатории по стандартизации и качеству пищевых продуктов, выпускаемых легкой промышленностью, фармацевтическая химия.

Ключевые слова: СВИНЕЦ, АТОМНО-АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, АБСОРБЦИЯ, СТАНДАРТНЫЙ РАСТВОР, ГРАДУИРОВОЧНЫЙ ГРАФИК, СОДЕРЖАНИЕ, ПДК



Введение

1. Литературный обзор

1.3 Пробоподготовка

2. Экспериментальная часть

Выводы

Введение


Применение материалов, содержащих свинец и его соединения, привело к загрязнению многих объектов окружающей среды. Определение свинца в продуктах металлургического производства, биологических материалах, почвах и т.д. представляет трудности, поскольку ему, как правило, сопутствуют другие двухвалентные металлы. Для решения такой аналитической задачи распространение получил атомно-абсорбционный метод определения благодаря доступности аппаратуры, высокой чувствительности и достаточной точности.

Пищевые продукты могут содержать не только полезные вещества, но и довольно вредные и опасные для организма человека. Поэтому основной задачей аналитической химии является контроль качества пищевых продуктов.

А именно в данной курсовой работе используется атомно-абсорбционный метод определения свинца в кофе.


1. Литературный обзор


1.1 Химические свойства свинца


В периодической таблице Д.И. Менделеева свинец располагается в IV группе, главной подгруппе и имеет атомный вес 207, 19. Свинец в своих соединениях может находиться в степени окисления +4, однако наиболее характерная для него +2.

В природе свинец встречается в виде различных соединений, наиболее важное из которых свинцовый блеск PbS. Распространенность свинца в земной коре составляет 0,0016 вес. %.

Свинец представляет собой голубовато-белый тяжелый металл плотностью 11,344 г/см3. Он очень мягок, легко режется ножом. Температура плавления свинца 327,3 оС. На воздухе свинец быстро покрывается тонким слоем окисла, защищающим его от дальнейшего окисления. В ряду напряжения свинец стоит непосредственно перед водородом; его нормальный потенциал равен - 0,126 В.

Вода сама по себе не взаимодействует со свинцом, но в присутствии воздуха свинец постепенно разрушается водой с образованием гидроокиси свинца:


Pb + O2 + H2O = 2Pb (OH) 2


Однако при соприкосновении с жесткой водой свинец покрывается защитной пленкой нерастворимых солей (главным образом сульфата и основного карбоната свинца), препятствующей дальнейшему действию воды и образованию гидроокиси.

Разбавленная соляная и серная кислоты не действуют на свинец вследствие малой растворимости соответствующих свинцовых солей. Легко растворяется свинец в азотной кислоте. Органические кислоты, особенно уксусная, также растворяют свинец в присутствии кислорода воздуха.

Свинец растворяется также в щелочах, образуя плюмбиты.


1.2 Физиологическая роль свинца


Обмен свинца в организме человека и животных изучен крайне мало. Биологическая роль его также полностью не ясна. Известно, что в организм свинец поступает с пищей (0,22 мг), водой (0,1 мг) и пылью (0,08мг). Обычно содержание свинца в организме мужчины составляет около 30мкг %, а у женщин около 25,5 мкг %.

С физиологической точки зрения свинец и почти все его соединения токсичны для человека и животных. Свинец даже в очень малых дозах накапливается в человеческом организме, и его токсическое действие постепенно усиливается. При отравлении свинцом на деснах появляются серые пятна, нарушаются функции нервной системы, ощущается боль во внутренних органах. Острое отравление приводит к тяжелым поражениям пищевода. У людей, работающих со свинцом, его сплавами или соединениями (например, у типографских работников), отравление свинцом является профессиональным заболеванием. Опасная доза для взрослого человека лежит в пределах 30-60 г РЬ (СН3СОО) 2 * 3Н2О .


1.3 Пробоподготовка


Отбор и подготовка лабораторной пробы производят в соответствии с НТД на данный вид продукции. Из объединенной лабораторной пробы отбирают две параллельные навески.

Продукты с высоким содержанием сахара (кондитерские изделия, джемы, компоты) обрабатывают серной кислотой (1: 9) из расчета 5 см3 кислоты на 1 г сухого вещества и выдерживают 2 дня.

Продукты с содержанием жира 20-60% (сыр, масличные семена) обрабатывают азотной кислотой (1:

) из расчета 1.5 см3 кислоты на 10 г сухого вещества и выдерживают 15 мин.

Пробы высушивают в сушильном шкафу при 150 оС (если отсутствуют агрессивные кислотные пары) на электроплитке со слабым нагревом. Для ускорения сушки проб можно применять одновременное облучение проб ИК - лампой.

Высушенные пробы осторожно обугливают на электроплитке или газовой горелке до прекращения выделения дыма, не допуская воспламенения и выбросов.

Помещают тигли в холодную электропечь и, повышая ее температуру на 50 оС каждые полчаса, доводят температуру печи до 450 оС. При этой температуре продолжают минерализацию до получения серой золы.

Охлажденную до комнатной температуры золу смачивают по каплям азотной кислотой (1:

) из расчета 0.5-1 см3 кислоты на навеску, выпаривают на водяпой бане и досушивают на электроплитке со слабым нагревом. Помещают золу в электропечь, доводят ее температуру до 300 оС и выдерживают 0.5 ч. Этот цикл (обработка кислотой, сушка, озоление) может быть повторен несколько раз.

Минерализацию считают законченной, когда зола станет белого или слегка окрашенного цвета без обугленных частиц .

Мокрая минерализация . Способ основан на полном разложении органических веществ пробы при нагревании в смеси концентрированных азотной кислоты, серной кислоты и перекиси водорода и предназначен для всех видов продуктов корме сливочного масла и животных жиров.

Навеску жидких и пюреобразных продуктов вносят в плоскодонную колбу, смачивая стенки стакана 10-15 см3 бидистиллированной воды. Можно брать навеску непосредственно в плоскодонную колбу.

Навеску твердых и пастообразных продуктов берут на обеззоленный фильтр, заворачивают в него и стеклянной палочкой помещают на дно плоскодонной колбы.

Пробы напитков отбирают пипеткой, переносят в колбу Кьельдаля и выпаривают на электроплитке до 10-15 см3.

Навеску сухих продуктов (желатин, яичный порошок) помещают в колбу и добавляют 15 см3 бидистиллированной воды, перемешивают. Желатин оставляют на 1 ч для набухания.

Минерализация проб. Минерализация проб сырья и пищевых продуктовкроме растительных масел, маргарина, пищевых жиров:

В колбу вносят азотную кислоту на расчет 10 см3 на каждые 5 г продукта и выдерживают не менее 15 мин, затем вносят 2-3 чистых стеклянных шарика, закрывают грушевидной пробкой и нагревают на электроплитке вначале слабо, затем сильнее, упаривая содержимое колбы до объема 5 см3.

Колбу охлаждают, вносят 10 см3 азотной кислоты, упаривают до 5 см3. Этот цикл повторяют 2-4 раза до прекращения бурых паров.

В колбу вносят 10 см3 азотной кислоты, 2 см3 серной кислоты и 2 см3 перекиси водорода на каждые 5 г продукта (минерализацию молочных продуктов проводят без добавления серной кислоты).

Для удаления остатков кислот в охлажденную колбу добавляют 10 см3 бидистиллированной воды, нагревают до появления белых паров и после этого кипятят еще 10 мин. Охлаждают. Добавление воды и нагревание повторяют еще 2 раза.

Если при этом образуется осадок, в колбу вносят 10 см3 бидистиллированной воды, 2 см3 серной кислоты, 5 см3 соляной кислоты и кипятят до растворения осадка, дополняя испаряющуюся воду. После растворения осадка раствор упаривают на водяной бане до влажных солей.

Минерализация растительных масел, маргарина, пищевых жиров:

свинец пищевой продукт химия

Колбу с навеской нагревают на электроплитке 7-8 часов до образования вязкой массы, охлаждают, добавляют 25 см3 азотной кислоты и вновь осторожно нагревают, избегая бурного вспенивания. После прекращения вспенивания в охлажденную колбу добавляют 25см3 азотной кислоты и 12 см3 перекиси водорода и нагревают до получения бесцветной жидкости. Если жидкость темнеет, к ней периодически добавляют по 5 см3 азотной кислоты, продолжая нагревание до завершения минерализации. Минерализацию считают законченной, если раствор после охлаждения остается бесцветным.

Кислотная экстракция . Способ основан на экстракции токсичных элементов с разбавленной (1:

) по объему соляной кислотой или разбавленной (1: 2) по объему азотной кислотой и предназначен для растительного и сливочного масел, маргарина, пищевых жиров и сыров.

Экстракция проводится в термостойкой с навеской продукта. В колбу цилиндром вносят 40 см3 раствора соляной кислоты в бидистиллированной воде (1:

) по объему и столько же азотной кислоты (1: 2). В колбу добавляют несколько стеклянных шариков, вставляют в нее холодильник, помещают на электроплитку, и кипятят в течении 1.5 часа с момента закипания. Затем содержимое колбы медленно охлаждают до комнатной температуры, не вынимая холодильника.

Колбу с экстракционной смесью сливочного масла, жиров или маргарина с кислотой помещают в холодную водяную баню для затвердения жира. Затвердевший жир прокалывают стеклянной палочкой, жидкость фильтруют через фильтр, смоченный используемой для экстракции кислотой, в кварцевую или фарфоровую чашу. Оставшийся в колбе жир расплавляют на водяной бане, добавляют 10 см3 кислоты, встряхивают, охлаждают, после охлаждения жир прокаливают и жидкость сливают через тот же фильтр в ту же чашу, затем промывают 5-7 см3 бидистиллированной воды.

Экстракционную смесь растительного масла с кислотой переносят в делительную воронку. Колбу ополаскивают 10 см3 кислоты, которую сливают в ту же воронку. После разделения фаз нижний водный слой сливают через смоченный кислотой фильтр в кварцевую или фарфоровую чашу, фильтр промывают 5-7 см3 бидистиллированной воды.

Экстракционную смесь сыра с кислотой фильтруют через смоченный кислотой фильтр в кварцевую или фарфоровую чашу. Колбу ополаскивают 10 см3 кислоты, которую фильтруют через тот же фильтр, затем фильтр промывают 5-7 см3 бидистиллированной воды.

Профильтрованный экстракт осторожно выпаривают и обугливают на электроплитке, а затем озоляют в электропечи.


1.4 Методики определения свинца


1.4.1 Концентрирование следовых количеств иона свинца с помощью нанометровых частиц диоксида титана (анатаза) с целью последующего их определения методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой с электротермическим испарением пробы

Атомно-эмиссионная спектрометрия с индуктивно связанной плазмой (ИСП-АЭС) - широко применяемый и весьма перспективный метод элементного анализа. Однако он имеет некоторые недостатки, среди которых сравнительно низкая чувствительность определения, низкая эффективность распыления, спектральные помехи и другие матричные эффекты. Поэтому ИСП-АЭС не всегда удовлетворяет требованиям современной науки и технологии. Сочетание ИСП-АЭС с электротермическим испарением пробы (ЭТИ-ИСП-АЭС) существенно расширяет возможности метода. Путем оптимизации температуры пиролиза и испарения можно последовательно испарять определяемые элементы, отделяя их от матрицы пробы. Этот метод имеет такие преимущества, как высокая эффективность ввода пробы, возможность анализа малых количеств образцов, низкие абсолютные пределы обнаружения и возможность прямого анализа твердых проб.

Инструменты и условия анализа. Использовали генератор ИСП мощностью 2 кВт с частотой 27 ± 3 МГц; горелку ИСП; графитовую печь WF-1А; дифракционный спектрометр РО5-2 с дифракционной решеткой 1300 штрихов/мм с линейной дисперсией 0.8 нм/мм; рН-метр Mettle Toledo 320-S; осадительную центрифугу модели 800.

Стандартные растворы и реагенты. Исходные стандартные растворы с концентрацией 1 мг/мл готовят растворением соответствующих оксидов (спектроскопической чистоты) в разбавленной НС1 с последующим разбавлением водой до заданного объема. Суспензию политетрафторэтилена прибавляли к каждому стандартному раствору до концентрации 6% м/о.

Использовали Тритон Х-100 реагентной чистоты (США). Остальные использованные реагенты были спектроскопической чистоты; вода дважды дистиллированная. Наночастицы диоксида титана диаметром менее 30 нм.

Методика анализа. Необходимый объем раствора, содержащего ионы металла, помещают в градуированную пробирку емк.10 мл и доводят значение рН до 8.0 с помощью 0.1 М НС1 и водного раствора NН3. Затем в пробирку вносят 20 мг наночастиц диоксида титана. Пробирку встряхивают в течение 10 мин. (предварительные эксперименты показали, что этого достаточно для достижения равновесия адсорбции). Пробирку оставляют на 30 мин., затем удаляют жидкую фазу с помощью центрифуги. После промывания осадка водой к нему добавляют 0.1 мл 60% -ной суспензии политетрафторэтилена, 0.5 мл 0.1% -ного раствора агара, 0.1 мл. Тритона Х-100 и разбавляют водой до 2.0 мл. Затем смесь диспергируют с помощью ультразвукового вибратора в течение 20 мин для достижения однородности суспензии перед ее вводом в испаритель. В графитовую печь вносят 20 мкл суспензии после прогрева и стабилизации ИСП. После высушивания, пиролиза и испарения пары образца переносятся в ИСП током газа-носителя (аргона); сигналы атомной эмиссии регистрируются. Перед каждым вводом пробы графитовую печь прогревают до 2700°С для ее очистки.

Применение метода. Разработанный метод применяют для определения Pb2+ в образцах природной озерной воды и речной воды. Образцы воды фильтровали через 0.45 мкм мембранный фильтр немедленно после пробоотбора и затем анализировали.


1.4.2 Определение свинца комбинирующем в реальном времени концентрирование с последующей обращено-фазовой ВЭЖХ

Приборы и реагенты . Схема системы ВЭЖХ с концентрированием в режиме реального времени ("on-line") приведена на рис.1.1 Система состоит из насоса Waters 2690 Alliance (на схеме 2), насоса Waters 515 (1), детектора с фотодиодной матрицей Waters 996 (7), шестиходового переключающего крана (4), устройства ввода большого объема (вмещает до 5.0 мл пробы) (3) и колонок (5,6). Концентрирующая колонка была Waters Xterra™ RP18 (5 мкм,20 х 3.9 мм), аналитическая колонка Waters Xterra™ RP18 (5 мкм, 150 х 3.9 мм). рН определяли рН-метром Beckman Ф-200, оптическую плотность измеряли спектрофотометром Shimadzu UV-2401.


Рис 1.1 Схема системы концентрирования в режиме реального времени с использованием переключающего крана


Все растворы готовили на ультрачистой воде, полученной с помощью системы Milli-Q50 Sp Reagent Water System (Millipore Corporation). Стандартный раствор свинца (П) с концентрацией 1.0 мг/мл, рабочие растворы с концентрацией ионов 0.2 мкг/мл готовят разбавлением стандартных. Используют тетрагидрофуран (ТГФ) для ВЭЖХ (Fisher Corporation), пирролидин-уксуснокислый буферный раствор концентрации 0.05 моль/л. Стеклянную посуду перед использованием вымачивали в течение длительного времени в 5% -ном растворе азотной кислоты и промывают чистой водой.

Методика эксперимента . Необходимый объем стандартного раствора или пробы вносят в мерную колбу емкостью 25 см3, додают 6 мл раствора Т4ХФП с концентрацией 1 х10-4 моль/л в ТГФ и 4 мл раствора пирролидин-уксуснокислого буферного раствора концентрацией 1 х10-4 моль/л и рН 10, разбавляют до метки водой и тщательно перемешивают. Смесь нагревают на кипящей водяной бане в течение 10 мин. После с охлаждения разбавляют до метки ТГФ для последующего анализа. Раствор (5.0 мл) вводят в дозатор, направляют в концентрирующую колонку с помощью подвижной фазы А со скоростью 2 см3/мин. По окончании концентрирования путем исключения шестиходового крана хелаты металлов с Т4ХФП, адсорбированные в верхней части концентрирующей колонки, элюируются потоком подвижных фаз А и Б со скоростью 1 мл/мин в обратном направлении и направляются в аналитическую колонку. Трехмерную хроматограмму регистрировали в диапазоне длин волн максимума поглощения 465 нм с помощью детектора с фотодиодной матрицей.


1.4.3 Инверсионно-вольтамперометрическое определение свинца с использованием стеклоуглеродной электродной системы

Приборы и реагенты. Для исследований использовали электродную систему, представляющую собой сборку из трех одинаковых стеклоутлеродных (СУ) электродов (индикаторный, вспомогательный, сравнения), запрессованных в общий корпус из тетрафторэтилена. Длина каждого электрода, выступающего из корпуса, равна 5 мм. Поверхность одного из них, выбранного в качестве индикаторного электрохимически обрабатывали асимметричным током при плотностях в интервале 0.1-5 кА/м2, рекомендуемых для металлов. Оптимальное время обновления поверхности найдено экспериментально и составляло 10-20 с. Индикаторный электрод служил анодом, а электрод из нержавеющей стали - катодом. Использовали 0.1 М водные растворы кислот, солей, щелочей, а также 0.1 М растворы щелочей или солей в смеси органических растворителей с водой в соотношении 1: 19 по объему. За состоянием обработанной поверхности наблюдали визуально с помощью микроскопа "Neophot 21 с увеличением порядка 3000.

Методика анализа. После обработки электродную сборку использовали для определения 3*10-6 М свинца (II) методом инверсионной вольтамперометрии на фоне 1*10-3 М HNO3. После электролиза при - 1.5 В в течение 3 мин при перемешивании магнитной мешалкой регистрировали вольтамперограмму на полярографе ПА-2. Потенциал анодного пика свинца оставался постоянным и составлял - 0.7 В. Скорость линейной развертки потенциала 20 мВ/с, амплитуда развертки 1.5 В, чувствительность по току 2 * 10-7 А/мм.

Водные растворы LiNO3, NaNO3, KNO3 в качестве обрабатывающего электролита позволяют получить стабильные высоты уже при втором измерении при удовлетворительной воспроизводимости (2.0, 2.9 и 5.4 % соответственно). Наибольшая чувствительность показаний достигается при использовании электролита, имеющего катион меньших размеров.


1.4.4 Атомно-абсорбционное определение свинца методом дозирования суспензий карбонизованных образцов с применением Pd-содержащего активированного угля в качестве модификатора

Аналитические измерения проводили на атомно-абсорбционном спектрометре SpectrAA-800 с электротермическим атомизатором GTA-100 и автодозатором PSD-97 ("Varian", Австралия). Использовали графитовые трубки с пиропокрыти-ем и интегрированной платформой ("Varian", Германия), лампы с полым катодом на свинец ("Hitachi", Япония) и кадмий (C"Varian", Австралия). Измерения интегральной абсорбционности с коррекцией неселективного поглощения света (дейтериевая система) проводили при спектральной ширине щели 0.5 нм и длине волны 283.3 нм. В качестве защитного газа служил аргон "сорт высший". Температурная программа работы атомизатора приведена в табл.1.1


Табл. 1.1 Температурная программа работы электротермического атомизатора GTA-100

СтадияТемпература,°СВысушивание 190Высушивание 2120Пиролиз1300Охлаждение50Атомизация23ОООчистка2500

В качестве модификаторов для атомно-абсорбционного определения РЬ в графитовой печи исследовали палладийсодержащие композиции на основе активированного угля и карбонизованной скорлупы ореха-фундука. Содержание металла в них составляло 0.5-4%. Для оценки изменений, происходящих с компонентами синтезированных модификаторов в восстановительных условиях, реализуемых в процессе выполнения анализа, материалы обрабатывали водородом при комнатной температуре.

Раствор с известной концентрацией РЬ готовили разбавлением ГСО № 7778-2000 и № 7773-2000 3% HNO3. Диапазон концентраций рабочих стандартных растворов элемента для построения градуировочных зависимостей составил 5.0-100 нг/мл. Для приготовления растворов использовали деионизованную воду.

При построении кривых пиролиза и атомизации использовали как стандартный раствор элемента, так и карбонизованный "Стандартный образец состава зерна пшеницы молотой ЗПМ-01". В первом случае в пластиковом стаканчике автодозатора смешивали 1.5 мл стандартного раствора элемента (50 нг/мл Pd в 5% HNO3) и 10-12 мг палладийсодержащего активированного угля; суспензию гомогенизировали и дозировали в графитовую печь. Во втором - такое же количество модификатора добавляли к подготовленной суспензии карбонизованной пробы (5-10 мг образца в 1-2 мл 5% HNO3).

1.4.5 Фотометрическое определение и концентрирование свинца

В работе использован ацетат свинца ч. д. а. Соединения (рис.1, являющиеся двухосновными кислотами) получены азосочетанием раствора хлорида 2-гидрокси-4 (5) - нитрофенилдиазония и соответствующего гидразона. Растворы формазанов в этаноле готовили по точной навеске.


Оптическую плотность растворов измеряли на спектрофотометре UV-5270 фирмы Веckman в кварцевых кюветах (l = 1 см). Концентрацию ионов водорода измеряли на иономере И-120М.

Реагенты взаимодействуют с ионами свинца, образуя окрашенные соединения. Батохромный эффект при комплексообразовании составляет 175 - 270 нм. На комплексообразование влияет характер растворителя и строение реагентов (рис.1).

Оптимальными условиями для определения свинца являются водно-этанольная среда (1:

) и рН 5.5-6.0, создаваемая аммиачно-ацетатным буферным раствором. Предел обнаружения свинца равен 0.16 мкг/мл. Продолжительность анализа 5 мин.

Наиболее интересно использование формазана в качестве реагента для концентрирования и последующего фотометрического определения свинца. Суть концентрирования и последующего определения свинца (II) с помощью формазана заключается в том, что из водно-этанольного раствора в присутствии ионов Ni, Zn, Hg, Co, Cd, Cr, Fe, хлороформным раствором формазана экстрагируют комплекс свинца.

Для сравнения использовали методику определения свинца сульфарсазеном (ГОСТ, МУ вып 15, № 2013-79). Полученные результаты анализа модельных растворов двумя методиками приведены в табл.1.2 Сравнение дисперсий по F-критерию показало, что Fэксп < Fтеор (Р = 0.95; f1 =f2 = 5); значит, дисперсии однородны.


Табл. 1.2 результаты определения свинца в модельных растворах (n=6; P=0.95)

Введено, мкг/млНайденоНайденоFэкспF теорсульфарсазеном, мкг/млSrформазаном, мкг/млSr4.14 2.10 3.994.04 ±0.28 2.06±0.29 3.92 ±0.17 0.29 3.92 ±0.172.8 5.5 1.74.14 ±0.07 2.10 ±0.08 3.99 ± 0.072.1 *10-2 2.5*10-2 2.1*10-23.97 3.57 3.374.53

2. Экспериментальная часть


Средства измерений, реактивы и материалы:

При выполнении по данной методике используют следующие средства измерений, устройства, реактивы и материалы:

·Атомно-абсорбционный спектрометр

·Лампа спектральная с полым катодом

·Компрессор для подачи сжатого воздуха

·Редуктор - по ГОСТ 2405

·Стаканы лабораторные, емкостью 25-50 см3 - по ГОСТ 25336

·Колбы мерные второго класса точности емкостью 25-100 см3

·Воронки лабораторные по ГОСТ 25336

·Вода дистиллированная

·Кислота азотная концентрированная, х. ч., ГОСТ 4461-77

·Стандартный раствор свинца (с = 10-1 г/л)

Условья определения:

§Длина волны при определении свинца ? =283,3 нм

§Ширина щели монохроматора 0,1нм

§Сила тока лампы 10 мА

Метод измерения:

Атомно-абсорбционная спектроскопия основана на поглощении излучения оптического диапазона невозбужденными свободными атомами свинца, образующимися при введении анализируемой пробы в пламя при длине волны ? =283,3 нм .

Требования безопасности:

При выполнении всех операций необходимо строго соблюдать правила техники безопасности при работе в химической лаборатории, соответствующие ГОСТ 126-77 "Основные правила безопасности в химической лаборатории", включая правила безопасной работы с электротехническими устройствами с напряжением до 1000 вольт.

Приготовление градуировочных растворов свинца:

Растворы готовят, используя стандартный раствор свинца с концентрацией


с= 10-1 г/л.


Для построения градуировочного графика используют растворы следующих концентраций:


*10-4, 3*10-4, 5*10-4, 7*10-4, 10*10-4 г/л


Стандартный раствор объемом 10 см3 вносят в колбу вместимостью 100 мл, доводять до метки дистиллированной водой. В 5 мерных колб вместимостью 100мл вносять соответственно 1, 3, 5, 7, 10 мл промежуточного раствора (раствор концентрации 10-2 г/л). Доводять до метки дистиллированной водой. Строят гардуировачный график в координатах А, у. е от с, г/л


Табл.2.1 Результаты измерений

концентрация, г/лСигнал, у. е. 0,000130,0003150,0005280,0007390,001057


Пробоподготовка:

Беру навеску кофе массой 1.9975 г.

Вношу ее в стакан емкостью 100 мл.

Растворяю навеску в 20 мл концентрированной азотоной кислоты.

Выпариваю содержимое стакана на водяной бане до половины исходного объема, периодами помешивая.

Раствор в стакане после выпаривания мутный, следовательно с помощью лабораторной воронки и бумажного фильтра отфильтровываю содержимое стакана в стакан емкостью 25 мл.

Отфильтрованный раствор вношу в колбу емкостью 25 мл и довожу до метки дистилированой водой.

Тщательно перемешиваю содержимое колбы.

Вношу часть раствора с колбы в пипетку, что и служит пробой для определения содержания свинца.

Для определения неизвестной концентрации, раствор вводят в атомизатор и после 10-15 секунд регистрируют показания прибора. Усредненные показания прибора откладывают на оси ординат градуировочного графика, и на оси абсцисс находят соответственное значение концентрации, сх г/л

Для расчета концентрации в образце использую расчетную формулу:


С =0.025*Сх*10-4*1000/ Mнав (кг)


Табл 2.2 Результаты измерений

ПробаСигнал, у. е. СреднееСх, г/л 123 кофе15141514,666672.9*10-4сырок00000ябл. сок00000виногр. сок00000крем3222.333337.8*10-5вода00000шампунь00000

Исходя из табличных данных, рассчитываю концентрацию свинца в образцах:

ОбразецПДК, мг/кгкофе10крем

С (Pb в пробе кофе) = 3.6 мг/кг

С (Pb в пробе крем) = 0.98 мг/кг


Выводы


В работе изложены методики определения свинца различными физико-химическими методами.

Приведены методы пробоподготовки для ряда пищевых объектов.

На основе литературных данных выбран наиболее удобный и оптимальный метод определения свинца в различных пищевых продуктах и природных объектах.

Использованный метод отличается высокой чувствительностью и точностью наряду с отсутствием отклика на присутствие других элементов, что позволяет получать истинные значения содержания искомого элемента с высокой степенью достоверности.

Выбранный метод позволяет также проводить исследования без особых трудностей в пробоподготовке и не нуждается в маскировании других элементов. Кроме этого, метод позволяет определять и содержание других элементов в исследуемой пробе.

По экспериментальной части можно сделать вывод, что содержание свинца в кофе "Черная карта" не превышает предельно допустимой концентрации, следовательно продукт пригоден для поступления в продажу.

Список использованной литературы


1. Глинка Н.И. Общая химия. - М.: Наука, 1978. - 403 с.

Золотов Ю.А. Основы аналитической химии. - М.: Высш. шк.; 2002. - 494 с.

Реми Г. Курс общей химии. - М: Изд. иностр. лит., 1963. - 587 с.

ГОСТ № 30178 - 96

Йипинг Ханг. // Журн. аналит. хим., 2003, Т.58, № 11, с.1172

Лианг Ванг. // Журн. аналит. хим., 2003, Т.58, № 11, с.1177

Невоструев В.А. // Журн. аналит. хим., 2000, Т.55, № 1, с.79

Бурилин М.Ю. // Журн. аналит. хим., 2004, Т.61, № 1, с.43

Маслакова Т.И. // Журн. аналит. хим., 1997, Т.52, № 9, с.931

Страницы:

УДК 543.(162:543 42:546.815

Е.Е. Костенко, М.Г. Христиаисен, Е.Н. Бутенко

ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛИЧЕСТВ СВИНЦА В ПИТЬЕВОЙ ВОДЕ С ПОМОЩЬЮ СУЛЬФОНАЗО Ш

Изучено комплексообразование РЬ(П) с сулъфоназо III и на основе получен­ных данных разработана методика фотометрического определения свинца и питьевой воде после предварительного экстракционного концентрирова­ния в виде комплекса с дити:юном.

Проблема экологической чистоты сырья имеет большое значение для производства пищевой продукции. Поэтому контроль качества питьевой воды - как одного из основных компонентов различных напитков очень важен, а создание новых селективных, чувствительных и экспрессных ме­тодик фотометрического определения токсичных металлов достаточно актуально. Среди последних одним из наиболее опасных для здоровья че­ловека является свинец . Величина его ПДК в различных пищевых объек­тах составляет 0,1 - 10 мг/кг, а в питьевой воде - 0,03 мг/дм3.

Для фотометрического определения свинца предложено довольно много органических реагентов. Основные характеристики методик при­ведены в табл. J. В большинстве своём эти методики недостаточно изби­рательные. Поэтому стандартный метод определения свинца в питьевой воде предусматривает его предварительное экстракционное выделение в виде комплекса с дитизоном. Затем при проведении реэкстракции добав­ляют сульфарсазен и измеряют оптическую плотность комплекса Pb (II) с этим реагентом ,

Реагент бис-сульфон или сульфоназо III (СФАЗ. HSR) используют для оп­ределения малых количеств галлия, скандия, индия и бария - / .

Молярное соотношение Pb (II) - СФАЗ в комплексе (равное 1:1) под­тверждается постоянством величины константы К в разных условиях её определения (табл. 2).

Необходимые для расчётов значения концентрации комплекса PbH2R: в условиях равновесия определяли по уравнению

= (А- ek C r -0 / (єк - eR) I,

где }

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: