Восстановительные химические свойства неметаллов. Общая характеристика неметаллов. Взаимодействие неметаллов с металлами

Неметаллы в периодической системе расположены справа от диагонали «бор – астат». Это элементы главных подгрупп III, IV, V, VI, VII, VIII групп. К неметаллам относятся: , , астат, а также .

Среди неметаллов два элемента – водород и гелий – относятся к s-семейству, все остальные принадлежат к р-семейству.

На внешнем электронном слое у атомов неметаллов находится различное число электронов: у атома водорода – один электрон (1s 1), у атомов гелия – два электрона (1s 2), у атома бора – три электрона (2s 2 2p 1). Однако атомы большинства неметаллов, в отличие от атомов , на внешнем электронном слое имеют большое число электронов – от 4 до 8; их электронные конфигурации изменяются от ns 2 np 2 у атомов элементов главной подгруппы IV группы до ns 2 np 6 у атомов инертных газов.

Физические свойства

Элементы – неметаллы образуют простые вещества, которые при обычных условиях существуют в разных агрегатных состояниях:

7 элементов-неметаллов образуют простые вещества, существующие в виде двухатомных молекул Э 2 (H 2 , O 2 , N 2 , F 2 , Cl 2 , Br 2 , I 2).


Бром

Кристаллические решетки металлов и твердых веществ-неметаллов отличаются между собой. Атомы металлов образуют плотно упакованную кристаллическую структуру, в которой между атомами существуют ковалентные связи. В кристаллической решетке неметаллов, как правило, нет свободных электронов. В связи с этим твердые вещества-неметаллы в отличие от плохо проводят тепло и электрический ток, не обладают пластичностью.

Химические свойства

Неметаллы как окислители

  1. Окислительные свойства неметаллов проявляются в первую очередь при их взаимодействии с . Например:

4Al + 3C = Al 4 C 3

2Al + N 2 = 2AlN

  1. Все неметаллы играют роль окислителя при взаимодействии с . Например:

H 2 + Cl 2 = 2HCl

3H 2 + N 2 = 2NH 3

  1. Любой неметалл выступает в роли окислителя в реакциях с теми неметаллами, которые имеют более низкую ЭО. Например:

2P + 5S = P 2 S 5

В этой реакции сера – окислитель, а – восстановитель, так как ЭО фосфора меньше ЭО серы.

  1. Окислительные свойства неметаллов проявляются в реакциях с некоторыми сложными веществами. Здесь важно особо отметить окислительные свойства неметалла – в реакциях окисления сложных веществ:

CH 4 + 2O 2 = CO 2 + 2H 2 O

4NH 3 + 5O 2 = 4NO + 6H 2 O

  1. Не только кислород, но и другие неметаллы ( , и другие) также могут играть роль окислителя в реакциях со сложными веществами. Например, сильный окислитель Cl 2 окисляет хлорид железа (II) в хлорид железа (III) :

2FeCl 2 + Cl 2 = 2FeCl 3

На разной окислительной активности основана способность одних неметаллов вытеснять другие из растворов их . Например, бром, как более сильный окислитель, вытесняет йод в свободном виде из раствора йодида калия:

2KI + Br 2 = 2KBr + I 2

Неметаллы как восстановители

Стоит отметить, что неметаллы (кроме фтора) могут проявлять и восстановительные свойства. При этом электроны атомов неметаллов смещаются к атомам элементов- окислителей. В образующихся соединениях атомы неметаллов имеют положительные степени окисления. Высшая положительная степень окисления неметалла обычно равна номеру группы.

  1. Все неметаллы выступают в роли восстановителей при взаимодействии с кислородом, так как ЭО кислорода больше ЭО всех других неметаллов (кроме фтора):

4P + 5O 2 = 2P 2 O 5

Горение фосфора в кислороде
  1. Многие неметаллы выступают в роли восстановителей в реакциях со сложными веществами-окислителями:

ZnO + C = Zn + CO

SiO2 + 2C = Si + 2CO

Таким образом, практически все неметаллы могут выступать как в роли окислителей, так и в роли восстановителей. Это зависит от того, с каким веществом взаимодействует неметалл.

Реакции самоокисления – самовосстановления

Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем, и восстановителем. Это реакции самоокисления – самовосстановления (диспропорционирования) . Например:

Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова»

Кафедра химии

СВОЙСТВА НЕМЕТАЛЛОВ И ИХ СОЕДИНЕНИЙ

канд. хим наук, доц. Кулиев С.И., маг. пед. наук, преподаватель каф. химии Белохвостов А.А.

1. Общая характеристика неметаллов………………………………………….4

2. Водород и его соединения 8………………………………………………...8

3. Свойства неметаллов VII-A группы. Галогены……………………………12

3.1. Общая характеристика галогенов. ...........................................................

3.2. Соединения галогенов с водородом. .......................................................

3.3. Кислородсодержащие соединения галогенов.........................................

3.4. Лабораторная работа "Галогены и их соединения" ...............................

4. Свойства неметаллов VI-A группы…………………………………………35

4.1. Общая характеристика элементов шестой группы главной подгруппы

............................................................................................................................

4.2. Кислород и его соединения......................................................................

4.3. Сера и ее соединения................................................................................

4.4. Элементы подгруппы селена....................................................................

4.5. Лабораторная работа ″Кислород. Пероксид водорода″......................

4.6. Лабораторная работа ″Сера и ее соединения″ .......................................

Контрольные вопросы и задачи......................................................................

5. Свойства неметаллов VA-группы…………………………………………...61

5.1. Общая характеристика неметаллов пятой группы.................................

5.2. Свойства азота и его соединений............................................................

5.3. Фосфор и его соединения........................................................................

5.4. Мышьяк и сурьма.....................................................................................

5.5. Лабораторная работа «Азот и его соединения».....................................

Контрольные вопросы и задачи......................................................................

5.6. Лабораторная работа «Фосфор и его соединения» ................................

Контрольные вопросы и задачи......................................................................

6. Свойства неметаллов IV-А группы…………………………………………86

6.1. Общая характеристика неметаллов четвертой группы..........................

6.2. Свойства углерода и его соединений.......................................................

6.3. Свойства кремния и его соединений.......................................................

6.3. Лабораторная работа «Свойства углерода и его соединений"..............

6.4. Лабораторная работа «Свойства кремния и его соединений» ............

Контрольные вопросы и задания..................................................................

7. Свойства неметаллов третьей III A – группы……………………………..105

7.1. Лабораторная работа «Свойства бора и его соединений»..................

Контрольные вопросы и задачи....................................................................

СПИСОК ЛИТЕРАТУРЫ................................................................................

Неметаллы

1. Общая характеристика неметаллов

Неметаллические свойства элементов определяются способностью атомов «принимать» электроны, т.е. проявлять при взаимодействии с атомами других элементов окислительные свойства. К неметаллам отно-

сятся элементы с большой энергией ионизации, большим сродством к электрону и минимально возможным радиусом атома.

Число неметаллов, известных в природе по сравнению с металлами относительно невелико. Из всех элементов неметаллическими свойствами обладают 22 элемента, остальные элементы характеризуются металлическими свойствами. Ряд элементов проявляет амфотерные свойства.

8B------- 1B

Металлы;

Амфотерные металлы;

Неметаллы;

Неметаллы в основном располагаются в правой верхней части периодической системы. По мере заполнения наружной электронной оболочки число электронов на внешнем слое у неметаллов растет, а радиус уменьшается, поэтому они в большей степени стремятся присоединять электроны. В связи с этим неметаллы характеризуются более высокими значениями энергии ионизации, сродства к электрону и электроотрицательности по сравнению с атомами металлов и поэтому у них преобладают окислительные свойства, т.е. способность атомов присоединять электроны. Особенно ярко окислительные свойства выражены у атомов неметаллов 6 и 7 групп второго и третьего периодов. Самый сильный окислитель – фтор. Он окисляет даже воду и некоторые благородные газы:

2 F2 + 2 H2 O = 4HF + O2

2 F2 + Xe = XeF4

Окислительные свойства неметаллов зависят от численного значения электроотрицательности атома и увеличиваются в следующем порядке:

Si, B, H, P, C, S, I, Br, N, Cl, O, F

Такая же закономерность в изменении окислительных свойств характерна и для простых веществ соответствующих элементов. Ее можно наблюдать на примере реакций с водородом:

3 H2 + N2 = 2 NH3 (t, катализатор);

H2 + Cl2 = 2 HCl (при освещении – hυ); H2 + F2 = 2 HF (в темноте - взрыв );

Восстановительные свойства у атомов неметаллов выражены довольно слабо и возрастают от кислорода к кремнию:

Si, B, H, P, C, S, I, Br, N, Cl, О

Благородные газы в виде простых веществ одноатомны (Не, Nе, Аr и т.д.). Галогены, азот, кислород, водород как простые вещества существуют в виде двухатомных молекул (F2 , С12 , Вr2 , I2 , N2 , О2 , Н2 ). Остальные неметаллы могут существовать при нормальных условиях, как в кристаллическом состоянии, так и в аморфном состоянии. Неметаллы в отличие от металлов плохо проводят теплоту и электрический ток.

Простые вещества (неметаллы )

Немолекулярного строения

Молекулярного строения

F2 , O2 , Cl2 , Br2 , N2 , I2 , S8

У этих неметаллов

Для этих неметаллов в твердом со-

кристаллические решетки, по-

стоянии характерны

молекулярные

этому они

обладают

кристаллические

решетки. При

твердостью

высокими

обычных условиях это газы, жидкости

температурами плавления

или твердые вещества с низкими тем-

пературами плавления.

С, В, Si – имеют сходное строение и обладают некоторыми общими свойствами. Эти элементы в виде простых веществ существуют в нескольких аллотропных модификациях – в кристаллическом и аморфном состоянии. Кристаллические видоизменения С (алмаз), Si и В обладают большой твердостью, высокими температурами плавления и полупроводниковыми свойствами. Все эти элементы образуют соединения с металлами – карбиды (СаС2 , А14 С3 , Fе3 С), силициды (Мg2 Si) и бориды (ТаВ, ТаВ2 ). Некоторые из них обладают большой твердостью (Fе3 С, ТаВ). Кристаллический бор В (как и кремний) имеет очень высокую температуру плавления (2075 о С) и обладает большой твердостью. Электропроводность бора с повышением температуры значительно увеличивается, что дает возможность широко использовать его в полупроводниковой технике.

С неметаллами водород образует летучие соединения молекулярного типа: H4 R, H3 R, H2 R, HR (кроме ВH3 или В2 Н6 ). В обычных условиях это газы или летучие жидкости. Водные растворы водородных соединений неметаллов могут проявлять и основные свойства (NH3 , PH3 ) и кислотные свойства (HF, HCl, H2 S). В периоде с увеличением заряда ядра кислотные свойства водо-

родных соединений неметаллов в водных растворах увеличиваются. Сероводородная кислота относится к слабым кислотам, хлороводородная кислота – к сильным кислотам. Соли сероводородной кислоты подвергаются гидролизу, соли соляной кислоты гидролизу не подвергаются:

Na2 S + H2 O <=> NaHS + NaOH; (рН > 7)

NaCl + H2 O ≠ (рН = 7)

В группе с увеличением заряда ядра кислотные свойства и восстановительные свойства водородных соединений неметаллов увеличиваются:

HCl + H2 SO4(конц.) ≠

2 HBr + H2 SO4(конц.)

SO2 + 2 H2 O

8 HI + H2 SO4(конц.)

4 I2

H2 S + 4 H2 O

Кислородные соединения неметаллов проявляют кислотные свойства. Неметаллы при взаимодействии с кислородом (прямом или косвенном) образуют кислотные оксиды, гидроксиды которых проявляют кислотные свойства:

НеМе (Э) → кислотный оксид (Эх Оу ) → гидроксид – кислота (Нх ЭОу )

S + O2 = SO2 ;

SO2 + H2 O = H2 SO3

SO2 + Na2 O = Na2 SO3 ;

SO2 + 2NaOH = Na2 SO3 + H2 O

Кислотные свойства оксидов и гидроксидов в периоде увеличиваются, а

группе уменьшаются.:

SiO2

P2 O5 – SO3

Cl2 O7

H2 SiO3

H3 PO4 – H2 SO4

HClO4

Кислотные свойства увеличиваются

НNО3 – H3 PO4 – H3 АsO4

Кислотные свойства уменьшаются

Если неметалл может образовывать соединения с разными степенями окисления, то свойства соединений будут зависеть от степени окисления элемента. С увеличением степени окисления кислотные свойства соединений увеличиваются:

НС1+1 О – НС1+3 О2 – НС1+5 О3 – НС1+7 О4

H2 S-2 – H2 S+4 O3 – H2 S+6 O4

Кислотные свойства усиливаются

В периодической таблице металлические элементы отделены от неметаллических элементов диагональной линией, проходящей от бора к астату. Вдоль этой границы располагаются элементы, проявляющие свойства металлов и неметаллов. К ним относятся бор, кремний, германий мышьяк, сурьма, теллур и астат, которые называются полуметаллами или металлоиды. Таким образом, внутри каждого периода имеется «пограничная зона», в которой располагается элемент, проявляющий двойственные свойства. Следовательно, переход от типичного металла к типичному неметаллу в периоде происходит постепенно. Внутри больших периодов переход от металлов к неметаллам происходит плавно.

Биологическая роль химических элементов в организме человека чрезвычайно разнообразна и важна. Основу живых систем составляют только шесть элементов: углерод, водород, кислород, азот, фосфор, сера . И все эти элементы относятся к неметаллам, о свойствах которых речь пойдет ниже. На долю перечисленных неметаллов в организме человека приходится 97,4%. Для этих элементов характерным является то, что они способны образовывать разнообразные связи, этим и обуславливается большое число биомолекул, существующих в живых организмах. Корме того, углерод, во-

дород, кислород, азот, фосфор и сера относятся к макроэлементам, т.е.

элементам, содержание которых в организме выше 10-2 %. К микроэлементам, содержание которых в организме находится в пределах от 10-3 до10-5 %, из неметаллов относятся иод, мышьяк, фтор, бром. По значимости для жизнедеятельности элементы делятся на группы. К жизненно необходимым или незаменимым элементам относится ряд металлов (Ca, K, Na, Mg, Mn, Cu, Co, Fe, Zn, Mo, V) и следующие неметаллы: Н, О, N, P, S, Cl, C, I. Их дефицит приводит к нарушению нормальной жизнедеятельности человека. Кроме того, в организме человека постоянно находятся следующие неметаллы: Br, F, B, Si, As, Se. Элементы, необходимые для построения и жизнедеятельности различных клеток и организмов, называют биогенными элементами.

Незаменимые элементынеметаллы, (макроэлементы)

Биогенные неметаллы, (микроэлементы)

Металлы

Для организма вреден не только недостаток, но и избыток биогенных элементов. В результате недостатка или избытка того или иного элемента в организме человека могут возникать различные заболевания. Существует тесная связь между живой и неживой природой. Обычно содержание элементов в живых организмах соответствует содержанию этого элемента в земной коре. В живых организмах постоянно происходит обмен химических элементов с окружающей средой. В обмене принимают участие элементы с близкими физико-химическими характеристиками, такими, как ионный радиус, заряд иона, энергия ионизации, координационное число и т.д. Ион ка- кого-либо элемента (особенно при его недостатке) в организме замещаться близким по химическим свойствам и ионному радиусу ионом другого элемента, чаще соседа по группе периодической системы. Этот процесс в первую очередь зависит от химического состава среды. Следовательно, нарушение естественного микроэлементного состава среды может пагубно отразиться на жизненных процессах. Поэтому так важна защита природы от неразумного загрязнения.

2. Водород и его соединения

Общая характеристика водорода. Элемент водород Н занимает особое положение в Периодической системе. Его помещают и 1-группу и в 7- группу периодической системы. Но в настоящее время чаще располагают в начале подгруппы галогенов.

В пользу помещения водорода в начало подгруппы щелочных металлов говорят следующие аргументы:

1. Водород, как и щелочные металлы, проявляет в большинстве соединений степень окисления +1 .

2. Подобно щелочным металлам, водород обладает ярко выраженными восстановительными свойствами.

Fe2 O3 + 3 H2 = 2 Fe + 3 H2 O

3. Водород и щелочные металлы легко замещают друг друга в химических реакциях.

NаОН + НС1 = NаС1 + Н2 О Сходство водорода с галогенами заключается в следующем:

1. Подобно атомам галогенов, водород может присоединять электрон с образованием иона водорода Н, который является изоэлектронным ближайшему благородному газу (Не)

2 Nа + Н2 = 2 NаН

2. Как и легкие галогены, водород – газ при обычных условиях. Молекула водорода состоит из двух атомов (Н 2 ).

3. Водород в соединениях легко замещается галогенами.

СН4 + С12 = СН3 С1 + НС1;

4. Потенциал ионизации (первый) водорода соизмерим с потенциа-

5. Температуры плавления и кипения водорода соответствуют ряду галогенов:

Температура плавления

Температура

Рис. 1. Температуры плавления и кипения галогенов и водорода

Водород – один из наиболее распространенных элементов на Земле. Его общее содержание в земной коре составляет ~ 1%. В пересчете на атомар-

ные количества оказывается, что из каждых 100 атомов земной коры на долю водорода приходится 17.

Водород – самый легкий газ из всех газов. Он бесцветен и не имеет запаха и вкуса. Он не ядовит, но при высоких концентрациях вызывает удушье и наркотическое действие. Из-за слабого межмолекулярного взаимодействия водород имеет очень низкие температуры кипения (-252,8 о С) и плавления (-259,2 о С). Н2 практически не растворяется в воде.

Под действием радиационных реакций происходит образование водо-

рода в атмосфере:

γ 2 Н2 + О2

2 Н2 О

Но в атмосфере Н2 находится только в виде следов, ввиду легкой диффузии его в космическое пространство.

Электронная формула водорода 1s 1 , характерные степени окисления +1 и реже –1 . Водород существует в виде трех изотопов:

1 1 Н; 2 1 Н (Д – дейтерий ); 3 1 Н(Т – тритий ).

Кроме этого искусственно получены два неустойчивых изотопа водорода 4 1 Н и 5 1 Н. В природе 99,985 % приходится на долю легкого водорода, остальное – дейтерий. Все изотопы имеют по оному электрону, но химические и физические свойства двухатомных молекул и их соединений заметно различаются.

Небольшие изменения энергии связи сильно сказываются на скоростях реакций. Еакт. тем выше, чем сильнее связь в молекуле

Свойства тяжелой воды отличаются от свойств Н2 О: температура замерзания тяжелой воды 4о С, температура кипения 101,42 о С, плотность 1,105 г/см3 (20о С). Получают тяжелую воду в результате электролиза легкой воды с последующим вымораживанием. Д2 О – не пригодна для жизненных процессов, так как более прочные связи О – Д изменяют скорости биологических процессов и приводят к смещению равновесия этих процессов. Дейтерий – играет важную роль в атомной технике. Д2 О – тяжелую воду используют как замедлитель нейтронов в ядерных реакторах.

Тритий – радиоактивный изотоп водорода. Тритий выделяется при дейст-

вии космического излучения на азот:

14 7 N + 1 0 n → 12 6 С + 3 1 Н

Тритий используется для получения энергии в процессе ядерного син-

3 1 Н + 2 1 Н → 4 2 Не + 1 0 n + 17,6 МэВ

В результате радиоактивного распада ядро трития испускает β-частицу и

превращается в ядро атома гелия:

3 1 Т → β + 3 2 Не.

катализатор, t = 800 о С )

В результате замены в соединениях легкого водорода на тритий получают «меченые препараты», которые широко используют в химических исследованиях и в медицинской практике.

Получение водорода. В лаборатории водород чаще всего получают действием разбавленных серной или соляной кислот на цинк, а также взаимодействием активных металлов с водой:

Zn + H2 SO4 (разб.) = ZnSO4 + H2

2 Na + 2 H2 O = 2 NaOH + H2

Промышленные способы получения основаны на более дешевом сырье:

а) водород получают при взаимодействии водяного пара с раскаленным углем:

С + H2 O = СO + H2

Полученная таким образом смесь называется водяным газом. В присутствии катализатора (Fe2 O3 ) при 500о С оксид углерода может быть превращен в диоксид углерода:

СО + H2 O = СO2 + H2 (катализатор, t )

очистка от СО2 трудностей не представляет б) из природного газа

2 СН4 + О2 + 2 Н2 О = 2 СО2 + 6 Н2 (

СН4 + Н2 О = СО + 3 Н2 (t = 800-900 о С )

Водород высокой степени чистоты получают электролизом растворов

гидроксидов щелочных металлов (NaOH, КОН):

К: 2 Н2 О + 2ē = Н2 + 2 ОН- А: 4 ОН- - 4ē = О2 + 2 Н2 О

Химические свойства водорода. Атом водорода имеет самый маленький размер по сравнению с атомами других элементов, поэтому катион водорода (протон) Н+ обладает сильной проникающей способностью в электронные оболочки атомов других элементов. Атом водорода образует с атомами наиболее электоотрицательных элементов водородные связи. По этой же причине свободный катион водорода Н+ не существует в водном

растворе, он соединяется с одной молекулой воды и образует катион оксония Н3 О+ .

По химическим свойствам водород является довольно активным веществом. При нагревании взаимодействует со многими неметаллами: Cl2 ; Br2 ; S;

O2 и др:

Sтв.

2 HF (реакция идет с взрывом уже

при комнатной температуре)

Водород – активный восстановитель. Широко применяется в технике для выделения металлов из солей и оксидов:

MgO + Н2 = Mg + Н2 O Fe3 O4 + 4 Н2 = 3 Fe + 4 Н2 O

Неметаллы Окислители.

В реакциях с металлами неметаллы проявляют себя как окислители .

А. Особенно активно с металлами взаимодействуют галогены. В результате реакций соединения образуются соли - галогениды.

Например , при взаимодействии алюминия с иодом образуется иодид алюминия AlI 3 :

2 Al 0 +3 I 20 −→− H 2 O 2 Al +3 I 3−1 .

Железо активно реагирует с хлором, образуя хлорид железа ( III ) FeCl 3 :

2 Fe 0 +3 Cl 20 −→− t o 2 Fe +3 Cl 3−1 .

Реакция соединения алюминия с серой начинается после того, как смесь веществ нагрели. Продуктом реакции является сульфид алюминия AlS 32 :

2 Al 0 +3 S 0 −→− t o Al 2+3 S 3−2 .

Химическое взаимодействие между натрием и серой протекает при простом механическом смешивании. В результате образуется сульфид натрия NaS 2 :

2 Na 0 + S 0 Na 2+1 S −2 .

N 20 + 3 H 20 t o , p 2 N 3 H 3 + 1 .

H 20 + Cl 20 −→− t o 2 H + 1 Cl 1 .

Неметаллы Восстановители.

Кислород имеет высокую электроотрицательность, поэтому в реакциях с другими неметаллами он является окислителем, а другие неметаллы - восстановителями .

В результате соединения кислорода с другими неметаллами образуются оксиды.

Например , сера сгорает в кислороде, образуя сернистый газ или оксид серы ( IV ) SO 2 :

S 0 + O 20 S +4 O 2−2 .

Фосфор энергично cгорает в кислороде ярким пламенем. В ходе реакции образуются белые клубы оксида фосфора ( V ) PO 52 :

4 P 0 +5 O 20 →2 P 2+5 O 5−2 .

В то же самое время взаимодействие кислорода с химически малоактивным азотом протекает медленно и начинается только при очень высокой температуре. Продуктом реакции является газообразный оксид азота ( II ) NO :

N 20 + O 20 −→− t o 2 N +2 O −2 .

Неметаллы как восстановители

1. Все неметаллы (кроме фтора) проявляют восстановительные свойства при взаимодействии с кислородом:

S + O 2 = SO 2 , 2H 2 + O 2 = 2H 2 О.

Кислород в соединении с фтором может проявлять и положительную степень окисления, т. е. являться восстановителем. Все остальные неметаллы проявляют восстановительные свойства. Так, например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить его оксиды (Cl 2 O, ClO 2 , Cl 2 O 2 ), в которых хлор проявляет положительную степень окисления. Азот при высокой температуре непосредственно соединяется с кислородом и проявляет восстановительные свойства. Еще легче с кислородом реагирует сера.

2. Многие неметаллы проявляют восстановительные свойства при взаимодействии со сложными веществами:

ZnO + C = Zn + CO, S + 6HNO 3 конц = H 2 SO 4 + 6NO 2 + 2H 2 О .

3. Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем и восстановителем:

Cl 2 + H 2 О = HCl + HClO.

4. Фтор ― самый типичный неметалл, которому нехарактерны восстановительные свойства, т. е. способность отдавать электроны в химических реакциях

Окислитель - это вещество или химический элемент, принимающие электроны в окислительно-восстановительной реакции, и понижающий степень окисления. Восстановитель - это вещество или химический элемент, отдающие электроны в окислительно-восстановительной реакции, и повышающий степень окисления.

Неметаллы химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов. Качественной характеристикой неметаллов является электроотрицательность.

Электроотрицательность ― это способность поляризовать химическую связь, оттягивать к себе общие электронные пары.

К неметаллам относят 22 элемента.

1-й период

3-й период

4-й период

5-й период

6-й период

Как видно из таблицы, неметаллические элементы в основном расположены в правой верхней части периодической системы.

Строение атомов неметаллов

Характерной особенностью неметаллов является большее (по сравнению с металлами) электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. Особенно сильные окислительные свойства, т. е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2- и 3-м периодах VI-VII групп. Если сравнить расположение электронов по орбиталям в атомах фтора, хлора и других галогенов, то можно судить об их отличительных свойствах. У атома фтора свободных орбиталей нет. Поэтому атомы фтора могут проявить только I и степень окисления ― 1. Самым сильным окислителем является фтор . В атомах других галогенов, например в атоме хлора, на том же энергетическом уровне имеются свободные d-орбитали. Благодаря этому распаривание электронов может произойти тремя разными путями. В первом случае хлор может проявить степень окисления +3 и образовать хлористую кислоту HClO2, которой соответствуют соли ― , например хлорит калия KClO2. Во втором случае хлор может образовать соединения, в которых хлора +5. К таким соединениям относятся HClO3 и ее ― , например хлорат калия КClO3 (бертолетова ). В третьем случае хлор проявляет степень окисления +7, например в хлорной кислоте HClO4 и в ее солях, ― перхлоратах (в перхлорате калия КClO4).

Строения молекул неметаллов. Физические свойства неметаллов

В газообразном состоянии при комнатной температуре находятся:

· водород ― H2;

· азот ― N2;

· кислород ― O2;

· фтор ― F2;

· радон ― Rn).

В жидком ― бром ― Br.

В твердом:

· бор ― B;

· углерод ― C;

· кремний ― Si;

· фосфор ― P;

· селен ― Se;

· теллур ― Te;

Гораздо богаче у неметаллов и цветов: красный ― у фосфора, бурый ― у брома, желтый ― у серы, желто-зеленый ― у хлора, фиолетовый ― у паров йода и т. д.

Самые типичные неметаллы имеют молекулярное строение, а менее типичные ― немолекулярное. Этим и объясняется отличие их свойств.

Состав и свойства простых веществ – неметаллов

Неметаллы образуют как одноатомные, так и двухатомные молекулы. К одноатомным неметаллам относятся инертные газы, практически не реагирующие даже с самыми активными веществами. расположены в VIII группе периодической системы, а химические формулы соответствующих простых веществ следующие: He, Ne, Ar, Kr, Xe и Rn.

Некоторые неметаллы образуют двухатомные молекулы. Это H2, F2, Cl2, Br2, Cl2 (элементы VII группы периодической системы), а также кислород O2 и азот N2. Из трехатомных молекул состоит газ озон (O3). Для веществ неметаллов, находящихся в твердом состоянии, составить химическую формулу довольно сложно. Атомы углерода в графите соединены друг с другом различным образом. Выделить отдельную молекулу в приведенных структурах затруднительно. При написании химических формул таких веществ, как и в случае с металлами, вводится допущение, что такие вещества состоят только из атомов. , при этом, записываются без индексов: C, Si, S и т. д. Такие простые вещества, как и кислород, имеющие одинаковый качественный состав (оба состоят из одного и же элемента ― кислорода), но различающиеся по числу атомов в молекуле, имеют различные свойства. Так, кислород запаха не имеет, в то время как озон обладает резким запахом, который мы ощущаем во время грозы. Свойства твердых неметаллов, графита и алмаза, имеющих также одинаковый качественный состав, но разное строение, резко отличаются (графит хрупкий, твердый). Таким образом, свойства вещества определяются не только его качественным составом, но и , сколько атомов содержится в молекуле вещества и как они связаны между собой. в виде простых тел находятся в твердом газообразном состоянии (исключая бром ― жидкость). Они не имеют физических свойств, присущих металлам. Твердые неметаллы не обладают характерным для металлов блеском, они обычно хрупки, плохо проводят и тепло (за исключением графита). Кристаллический бор В (как и кристаллический кремний) обладает очень высокой температурой плавления (2075°С) и большой твердостью. Электрическая проводимость бора с повышением температуры сильно увеличивается, что дает возможность широко применять его в полупроводниковой технике. Добавка бора к стали и к сплавам алюминия, меди, никеля и др. улучшает их механические свойства. Бориды (соединения с некоторыми металлами, например с титаном: TiB, TiB2) необходимы при изготовлении деталей реактивных двигателей, лопаток газовых турбин. Как видно из схемы 1, углерод ― С, кремний ― Si, ― В имеют сходное строение и обладают некоторыми общими свойствами. Как простые вещества они встречаются в двух видоизменениях ― в кристаллическом и аморфном. Кристаллические видоизменения этих элементов очень твердые, с высокими температурами плавления. Кристаллический обладает полупроводниковыми свойствами. Все эти элементы образуют соединения с металлами ― , и (CaC2, Al4C3, Fe3C, Mg2Si, TiB, TiB2). Некоторые из них обладают большей твердостью, например Fe3C, TiB. используется для получения ацетилена.

Химические свойства неметаллов

В соответствии с численными значениями относительных электроотрицательностей окислительные неметаллов увеличивается в следующем порядке: Si, B, H, P, C, S, I, N, Cl, O, F.

Неметаллы как окислители

Окислительные свойства неметаллов проявляются при их взаимодействии:

· с металлами: 2Na + Cl2 = 2NaCl;

· с водородом: H2 + F2 = 2HF;

· с неметаллами, которые имеют более низкую электроотрицательность: 2Р + 5S = Р2S5;

· с некоторыми сложными веществами: 4NH3 + 5O2 = 4NO + 6H2O,

2FeCl2 + Cl2 = 2 FeCl3.

Неметаллы как восстановители

1. Все неметаллы (кроме фтора) проявляют восстановительные свойства при взаимодействии с кислородом:

S + O2 = SO2, 2H2 + O2 = 2H2О.

Кислород в соединении с фтором может проявлять и положительную степень окисления, т. е. являться восстановителем. Все остальные неметаллы проявляют восстановительные свойства. Так, например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить его оксиды (Cl2O, ClO2, Cl2O2), в которых хлор проявляет положительную степень окисления. Азот при высокой температуре непосредственно соединяется с кислородом и проявляет восстановительные свойства. Еще легче с кислородом реагирует сера.

2. Многие неметаллы проявляют восстановительные свойства при взаимодействии со сложными веществами:

ZnO + C = Zn + CO, S + 6HNO3 конц = H2SO4 + 6NO2 + 2H2О.

3. Существуют и такие реакции, в которых и же неметалл является одновременно и окислителем и восстановителем:

Cl2 + H2О = HCl + HClO.

4. Фтор ― самый типичный неметалл, которому нехарактерны восстановительные свойства, т. е. способность отдавать электроны в химических реакциях.

Соединения неметаллов

Неметаллы могут образовывать соединения с разными внутримолекулярными связями.

Виды соединений неметаллов

Общие формулы водородных соединений по группам периодической системы химических элементов приведены в таблицe:

Летучие водородные соединения

Общая халькогенов.

В главной подгруппе шестой группы периодической системы элементов . И. Менделеева находятся элементы: кислород (О), сера (S), селен (Se), (Te) и (Po). Эти элементы имеют общее название халькогены, что означает «образующие руды».

В подгруппе халькогенов сверху вниз с увеличением заряда атома закономерно изменяются свойства элементов: уменьшается их неметаллический и усиливаются металлические свойства. Так ― типичный неметалл, а полоний ― металл (радиоактивен).

Серый селен

Производство фотоэлементов и выпрямителей электрического тока

В полупроводниковой технике

Биологическая роль халькогенов

Сера играет важную роль в жизни растений, животных и человека. В животных организмах сера входит в состав почти всех белков, в серосодержащие ― и , а также в состав витамина В1 и гормона инсулина. При недостатке серы у овец замедляется рост шерсти, а у птиц отмечена плохая оперяемость.

Из растений больше всего потребляют серу капуста, салат, шпинат. Богаты серой также стручки гороха и фасоли, редис, репа, лук, хрен, тыква, огурцы; бедны серой и свекла.

По химическим свойствам селен и теллур очень похожи на серу, но по физиологическим являются ее антагонистами. Для нормального функционирования организма необходимы очень малые количества селена. Селен положительно влияет на сердечно-сосудистой системы, красных кровяных , повышает иммунные свойства организма. Повышенное количество селена вызывает у животных заболевание, проявляющееся в исхудании и сонливости. Недостаток селена в организме ведет к нарушению работы сердца, органов дыхания, повышается тела и может даже наступить . Существенное влияние селен оказывает на животных. Например, у оленей, которые отличаются высокой остротой зрения, в сетчатке селена содержится в 100 раз больше, чем в других частях тела. В растительном мире много селена содержат все растения. Особенно большое его накапливает растение .

Физиологическая роль теллура для растений, животных и человека изучена меньше, чем селена. Известно, что теллур менее токсичен по сравнению с селеном и соединения теллура в организме быстро восстанавливаются до элементарного теллура, который в свою очередь соединяется с органическими веществами.

Общая характеристика элементов подгруппы азота

В главную подгруппу пятой группы входят азот (N), фосфор (P), мышьяк (As), сурьма (Sb) и (Bi).

Сверху вниз в подгруппе от азота к висмуту неметаллические свойства уменьшаются, а металлические свойства и радиус атомов ― увеличиваются. Азот, фосфор, мышьяк являются неметаллами, а относится к металлам.

Подгруппа азота

Сравнительные характеристики

7 N азот

15 Р фосфор

33 As мышьяк

51 Sb сурьма

83 Bi висмут

Электронное строение

…4f145d106S26p3

Степень окисления

1, -2, -3, +1, +2, +3, +4, +5

3, +1, +3, +4,+5

Электро - отрицательность

Нахождение в природе

В свободном состоянии ― в атмосфере (N2 ― ), в связанном ― в составе NaNO3 ― ; КNO3 ― индийская селитра

Ca3(РО4)2 ― фосфорит, Ca5(РО4)3(ОН) ― гидрооксилапатит, Ca5(РО4)3F ― фторапатит

Аллотропические формы при обычных условиях

Азот (одна форма)

NH3 + Н2О ↔ NH4ОН ↔ NH4+ + ОН – (гидроксид аммония);

РH3 + Н2О ↔ РH4ОН ↔ РH4+ + ОН- (гидроксид фосфония).

Биологическая роль азота и фосфора

Азот играет исключительно важную роль в жизни растений, поскольку входит в состав аминокислот, белков и хлорофилла, витаминов группы В, ферментов, активизирующих . Поэтому недостаток азота в почве отрицательно сказывается на растениях, и в первую очередь на содержание хлорофилла в листьях, из-за чего они бледнеют. потребляют от 50 до 250 кг азота на 1 гектар площади почвы. Больше всего азота находится в цветах, молодых листьях и плодах. Важнейшим источником азота для растений являются азотные ― это в основном нитрат аммония и сульфат аммония. Следует отметить также особую роль азота как составной части воздуха ― важнейшего компонента живой природы.

Ни один из химических элементов не принимает столь активного и многообразного участия в жизненных процессах растительных и животных организмов, как фосфор. Он является составной частью нуклеиновых кислот, входит в состав некоторых ферментов и витаминов.

У животных и человека в костях сосредоточено до 90 % фосфора, в мышцах ― до 10 %, в нервной ― около 1 % (в виде неорганических и органических соединений). В мышцах, печени, мозге и других органах находится в виде фосфатидов и фосфорных эфиров. Фосфор принимает участие в мышечных сокращениях и в построении мышечной и костной ткани.

Людям, занимающимся умственным трудом, необходимо употреблять повышенное количество фосфора, чтобы не допустить истощения нервных клеток, которые функционируют с повышенной нагрузкой именно при умственном труде. При недостатке фосфора понижается работоспособность, развивается невроз, нарушается двухвалентных германия, олова и свинца GeО, SnО, PbО ― амфотерными оксидами.

Высшие оксиды углерода и кремния СО2 и SiO2 являются кислотными оксидами, которым соответствуют гидроксиды, проявляющие слабокислотные свойства ― Н2СО3 и кремниевая кислота Н2SiО3.

Амфотерным оксидам ― GeО2, SnО2, PbО2 ― соответствуют амфотерные гидроксиды, причем при переходе от гидроксида германия Ge(ОН)4 к гидроксиду свинца Pb(ОН)4 кислотные свойства ослабляются, а основные усиливаются.

Биологическая роль углерода и кремния

Соединения углерода являются основой растительных и животных организмов (45 % углерода содержится в растениях и 26 % ― в животных организмах).

Характерные биологические свойства проявляют оксид углерода (II) и оксид углерода (IV). Оксид углерода (II) ― очень токсичный газ, так как он прочно соединяется с гемоглобином крови и лишает гемоглобин возможности переносить кислород от легких к капиллярам. При вдыхании СО может получить отравления, возможен даже смертельный . Оксид углерода (IV) особенно важен для растений. В клетках растений (особенно в листьях) в присутствии хлорофилла и действием солнечной энергии происходит глюкозы из углекислого и воды с выделением кислорода.

В результате фотосинтеза растения ежегодно связывают 150 млрд. т углерода и 25 млрд. т водорода, и выделяют в атмосферу до 400 млрд. т кислорода. Ученые установили, что растения получают около 25 % СО2 через корневую систему из растворенных в почве карбонатов.

Кремний растения используют для построения покровных тканей. Содержащихся в растениях кремний, пропитывая клеточные стенки, делает их более твердыми и устойчивыми к повреждениям насекомыми, предохраняет их от проникновения грибной инфекции. Кремний находится почти во всех тканях животных и человека, особенно им богаты , печень, хрящи. У туберкулезных больных в костях, зубах и хрящах кремния значительно меньше, чем у здоровых людей. При таких заболеваниях, как , Боткина, отмечается уменьшение содержания кремния в крови, а при поражении толстой кишки ― наоборот, увеличение его содержания в крови.

ОПРЕДЕЛЕНИЕ

Неметаллы – химические элементы, атомы которых принимают электроны для завершения внешнего энергетического уровня, образуя при этом отрицательно заряженные ионы. Электронная конфигурация валентных электронов неметаллов в общем виде — ns 2 np 1−5 Исключение составляют водород (1s 1) и гелий (1s 2), которые тоже рассматривают как неметаллы.

Неметаллы обычно обладают большим спектром степеней окисления в своих соединениях. Большее число электронов на внешнем энергетическом уровне по сравнению с металлами определяет их большую способность к присоединению электронов и проявлению высокой окислительной активности.

Нахождение неметаллов в природе

Неметаллы находятся в земной коре (в большинстве своем кислород и кремний — 76 % от массы земной коры а также As, Se, I, Te, но в очень незначительных количествах), в воздухе (азот и кислород) , в составе растительной массы (98,5 % — углерод, водород, кислород, сера, фосфор и азот), а также в основе массы человека (97,6 % — — углерод, водород, кислород, сера, фосфор и азот). Водород и гелий – входят в состав космических объектов, включая Солнце. Чаще всего в природе неметаллы встречаются в виде соединений.

Физические свойства неметаллов

Фтор, хлор, кислород, азот, водород и инертные газы представляют собой газообразные вещества, йод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор –твёрдые вещества; бром -жидкость.

Положение неметаллов в Периодической системе Д.И. Менделеева

Если в Периодической системе мысленно провести диагональ от бериллия к астату, то в правом верхнем углу таблицы будут находиться элементы-неметаллы. Среди неметаллов есть s-элемент – водород; р-элементы бор; углерод, кремний; азот, фосфор, мышьяк, кислород, сера, селен, теллур, галогены и астат. Элементы VIII группы – инертные (благородные) газы, которые имеют полностью завершенный внешний энергетический уровень и их нельзя отнести ни к металлам, ни к неметаллам.

Неметаллы обладают высокими значениями сродства к электрону, электроотрицательность и окислительно-восстановительный потенциал.

Получение неметаллов

Многообразие неметаллов породило многообразие способов их получения, так водород получают, как лабораторными способами, например, взаимодействием металлов с кислотами (1), так и промышленными способами, например, конверсией метана (2).

Zn +2HCl = ZnCl 2 + H 2

CH 4 + H 2 O = CO + 3H 2 (температура 900 С)

Получение галогенов осуществляют в основном, путем окисления галогеноводородных кислот:

MnO 2 +4HCl = MnCl 2 + Cl 2 + 2H 2 O

K 2 Cr 2 O 7 +14HCl= 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O

2KMnO 4 +16HCl = 2 MnCl 2 +5Cl 2 +8H 2 O+ 2KCl

Для получения кислорода используют реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 +O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 +2Cr 2 O 3 +3O 2

Серу получают неполным окислением сероводорода (1) или по реакции Вакенродера (2):

H 2 S + O 2 =2S +2H 2 O (1)

2H 2 S + SO 2 =3S↓ +2H 2 O (2)

Для получения азота используют реакцию разложения нитрита аммония:

NaNO 2 +NH 4 Cl = N 2 + NaCl +2H 2 O

Основной способ получения фосфора – из фосфата кальция:

Ca 3 (PO 4) 2 +3SiO 2 +5C = 3CaSiO 3 +5CO +2P

Химические свойства неметаллов

Основные химические свойства неметаллов (общие для всех) – это:

— взаимодействие с металлами

2Na + Cl 2 = 2NaCl

6Li + N 2 = 2Li 3 N

2Ca + O 2 = 2CaO

— взаимодействие с другими неметаллами

3H 2 + N 2 = 2NH 3

H 2 + Br 2 = 2HBr

4P + 5O 2 = 2P 2 O 5

2F 2 + O 2 = 2OF 2

S + 3F 2 = SF 6 ,

C + 2Cl 2 = CCl 4

Каждый неметалл обладает специфическими химическими свойствами, характерными только для него, которые подробно рассматривают при изучении каждого неметалла в отдельности.

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений S→H 2 S→SO 2 →SO 3 →H 2 SO 4
Решение S + H 2 = H 2 S

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O

2SO 2 + O 2 = 2SO 3

SO 3 + H 2 O = H 2 SO 4

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: