Экспериментальные методы измерения скорости света. Способы определения скорости света. Современные методы измерения скорости света

Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.

Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c . Скорость света равняется приблизительно 300 000 000 м/с.

Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.


Так, Декарт , Кеплер и Ферма были того же мнения, что и ученые античности. А вот считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.

Опыт Галилея

Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете заказать эссе , оформив заявку на сайте.


Опыты Рёмера и Брэдли

Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера . Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.


Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.

Опыт Физо

К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.


Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.

С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.


Самое точное значение скорости света

Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду , полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра . Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.

Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. Заказать контрольную работу онлайн вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!

С обнаружением на эксперименте корпускулярных свойств и проявлений света (фотоэффект, Комптон - эффект и другие явления) была разработана квантовая природа света М.Планком и А.Эйнштейном, в рамках которой свет проявляет как волновые, так и корпускулярные свойства - так называемый, корпускулярно - волновой дуализм. (Макс Карл Эрнст Людвиг Планк - немецкий физик- теоретик, 1858-1947, Нобелевская премия 1918 г. за открытие законов излучения, Артур Хоти Комптон, американский физик, 1892-1962, Нобелевская премия 1927г. за эффект, названный его именем).

Введение 3
1. Эксперименты по определению скорости света. 4
1.1. Первые опыты. 4
1.1.1. Опыт Галилея. 4
1.2 Астрономические способы определения скорости света. 4
1.2.1. Затмение спутника Юпитера - Ио. 4
1.2.2. Аберрация света. 6
1.3. Лабораторные способы измерения скорости света. 7
1.3.1. Метод синхронного детектирования. 7
1.4. Опыты по распространению света в среде. 9
1.4.1. Опыт Армана Физо. 9

1.4.3. Опыты А. Майкельсона и Майкельсона - Морли. 12
1.4.4.Усовершенствование опыта Майкельсона. 13
2. Максимальность скорости света. 14
2.1. Опыт Саде. 14
2.2. Опыт Бертоцци. 15
3. Скорость света в веществе. 17
4. Тахионы. Частицы, движущиеся со скоростями больше скорости света. 17
4.1. Мнимые массы. 17
4.2. Ускорение вместо замедления. 18

5. Сверхсветовая скорость. 20
Заключение 22
Список литературы 23

Работа содержит 1 файл

Курсовая работа на тему:

“Скорость света и методы её определения”

Введение 3

1. Эксперименты по определению скорости света. 4

1.1. Первые опыты. 4

1.1.1. Опыт Галилея. 4

1.2 Астрономические способы определения скорости света. 4

1.2.1. Затмение спутника Юпитера - Ио. 4

1.2.2. Аберрация света. 6

1.3. Лабораторные способы измерения скорости света. 7

1.3.1. Метод синхронного детектирования. 7

1.4. Опыты по распространению света в среде. 9

1.4.1. Опыт Армана Физо. 9

1.4.2. Усовершенствование Фуко. 10

1.4.3. Опыты А. Майкельсона и Майкельсона - Морли. 12

1.4.4.Усовершенствование опыта Майкельсона. 13

2. Максимальность скорости света. 14

2.1. Опыт Саде. 14

2.2. Опыт Бертоцци. 15

3. Скорость света в веществе. 17

4. Тахионы. Частицы, движущиеся со скоростями больше скорости света. 17

4.1. Мнимые массы. 17

4.2. Ускорение вместо замедления. 18

4.3. Отрицательные энергии. 19

5. Сверхсветовая скорость. 20

Заключение 22

Список литературы 23

Введение

О природе света размышляли с древних времен. Древние мыслители считали, что свет это истечение "атомов" от предметов в глаза наблюдателя (Пифагор - около 580 - 500 лет до нашей эры). Тогда же определили прямолинейность распространения света, считалось, что он распространяется с очень большими скоростями, практически мгновенно. В XVI-XVII веках Р.Декарт (Рене Декарт, французский физик, 1596-1650), Р. Гук (Роберт Гук, английский физик, 1635- 1703), X. Гюйгенс (Христиан Гюйгенс, голландский физик, 1629-1695) исходили из того, что распространение света - это распространение волн в среде. Исаак Ньютон (Исаак Ньютон, английский физик, 1643 - 1727) выдвигал корпускулярную природу света, т.е. считал, что свет - это излучение телами определенных частиц и их распространение в пространстве.

В 1801 году Т. Юнг (Томас Юнг, английский физик, 1773-1829) наблюдал интерференцию света, что послужило развитию экспериментов со светом по интерференции и дифракции. И в 1818 году О.Ж. Френель (Огюстен Жан Френель, французский физик, 1788-182 7) возродил волновую теорию распространения света. Д.К. Максвелл после установления общих законов электромагнитного поля пришел к выводу, что свет - это электромагнитные волны. Далее была выдвинута гипотеза "мирового эфира", что свет это распространение электромагнитных волн в среде - "эфире". Знаменитые эксперименты по проверке существования мирового эфира проводились А.А. Майкельсоном и Э.У. Морли (1837-1923 г.г.), а по увлечению света движущейся средой - А.И. Физо. (Альберт Абрахам Майкельсон, американский физик, 1852-1931, Нобелевская премия 1907 г. за создание прецизионные инструменты и выполненные с их помощью спектроскопические и метрологические исследования; Арман Ипполит Луи Физо, французский физик, 1819-1896). В результате было показано, что мирового эфира (по крайней мере, в том понимании, как считали физики в то время - некоторая абсолютная неподвижная среда) не существует.

С обнаружением на эксперименте корпускулярных свойств и проявлений света (фотоэффект, Комптон - эффект и другие явления) была разработана квантовая природа света М.Планком и А.Эйнштейном, в рамках которой свет проявляет как волновые, так и корпускулярные свойства - так называемый, корпускулярно - волновой дуализм. (Макс Карл Эрнст Людвиг Планк - немецкий физик- теоретик, 1858-1947, Нобелевская премия 1918 г. за открытие законов излучения, Артур Хоти Комптон, американский физик, 1892-1962, Нобелевская премия 1927г. за эффект, названный его именем).

Скорость света также пытались измерить различными способами, как в естественных, так и в лабораторных условиях.

1. Эксперименты по определению скорости света.

1.1. Первые опыты.

1.1.1. Опыт Галилея.

Первым, кто попытался измерить скорость света экспериментально, был итальянец Галилео Галилей. Опыт представлял собою следующее: два человека, стоящие на вершинах холмов на расстоянии нескольких километров друг от друга, подавали сигналы с помощью фонарей, снабженных заслонками. Этот опыт, осуществленный впоследствии учеными Флорентийской академии, он высказал в своем труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному движению» (опубликованном в Лейдене в 1638 году).

После опыта Галилей сделал выводы, что скорость света распространяется мгновенно, а если не мгновенно, то с чрезвычайно большой скоростью.

Имевшиеся тогда в распоряжении Галилея средства, конечно, не позволяли так просто решить этот вопрос, и он вполне отдавал себе в этом отчет.

1.2 Астрономические способы определения скорости света.

1.2.1. Затмение спутника Юпитера - Ио.

O.K. Ремер (1676 г., Оле Кристенсен Ремер, голландский астроном, 1644-1710) наблюдал затмение спутника Юпитера (J) - Ио, открытого еще Галилеем в 1610 году (он также открыл еще 3 спутника Юпитера). Радиус орбиты спутника Ио вокруг Юпитера равен 421600 км, диаметр спутника - 3470 км (см рис.2.1 и 2.2). Время затмения составляло = 1.77 суток = 152928 с. O.K. Ремер наблюдал нарушение периодичности затмений, и это явление Ремер связал с конечной скоростью распространения света. Радиус орбиты Юпитера вокруг Солнца Rj значительно больше радиуса орбиты Земли Rз, а период обращения примерно равен 12 лет. То есть за время полуоборота Земли (полгода), Юпитер переместится по орбите на некоторое расстояние и, если фиксировать время прихода светового сигнала с момента появления Ио из тени Юпитера, то свет должен пройти большее расстояние до Земли в случае 2, чем в случае 1 (см рис. 2.2). Пусть - момент времени, когда Ио выходит из тени Юпитера по часам на Земле, а - реальный момент времени, когда это происходит. Тогда имеем:

где - расстояние, которое свет проходит до Земли. В следующий выход Ио мы имеем аналогично:

где - новое расстояние, которое свет проходит до Земли. Истинный период обращения Ио вокруг Юпитера определяется разностью времен:

Конечно, за один промежуток времени, когда происходит одно затмение, трудно определять эти времена с большой точностью. Поэтому удобнее вести наблюдения за полгода, когда расстояние до Земли меняется на максимальную величину. При этом истинный период затмения можно определить как среднюю величину за полгода или год. После этого можно определить скорость света после двух последовательных измерений времени выхода Ио из тени:

Величины находятся из астрономических вычислений. Однако за одно затмение это расстояние меняется мало. Удобнее провести измерения за полгода (когда Земля перейдет на другую сторону своей орбиты) и получить суммарное время затмения:

где п - число затмений за эти полгода. Все остальные промежуточные времена распространения света до Земли сократились, поскольку расстояние меняется слабо за одно затмение. Отсюда Ремер получил скорость света, равную с = 214300 км/с.

1.2.2. Аберрация света.

В астрономии аберрацией называют изменение видимого положения звезды на небесной сфере, то есть отклонение видимого направления на звезду от истинного, вызываемое конечностью скорости света и движением наблюдателя. Суточная аберрация обусловлена вращением Земли; годовая – обращением Земли вокруг Солнца;

вековая – перемещением Солнечной системы в пространстве.

Рис. Аберрация света звезды.

Для понимания этого явления можно провести простую аналогию. Капли дождя, падающие в безветренную погоду вертикально, оставляют на боковом стекле движущегося автомобиля наклонный след.

В результате аберрации света кажущееся направление на звезду отличается от истинного на угол, называемый углом аберрации. Из рисунка видно, что

где - составляющая скорости движения Земли, перпендикулярная направлению на звезду.

Практически явление аберрации (годовой) наблюдается следующим образом. Ось телескопа при каждом наблюдении ориентируется в пространстве одинаковым образом относительно звездного неба, и при этом изображение звезды фиксируется в фокальной плоскости телескопа. Это изображение в течение года описывает эллипс. Зная параметры эллипса и другие данные, отвечающие геометрии опыта, можно вычислить скорость света. В 1727 г. из астрономических наблюдений Дж. Брэдли нашел 2* = 40,9" и получил

с = 303000км/с.

1.3. Лабораторные способы измерения скорости света.

1.3.1. Метод синхронного детектирования.

Для измерения скорости света Арман Физо (1849г.) применил метод синхронного детектирования. Он использовал быстро вращающийся диск с N зубьями (рис. 2.3), представляющие собой непрозрачные сектора. Между этими секторами (зубьями) свет проходил от источника к отражающему зеркалу и обратно к наблюдателю. При этом угол между серединами секторов равен

Угловая скорость вращения подбиралась так, чтобы свет после отражения от зеркала за диском попадал в глаза наблюдателю при прохождении через соседнее отверстие. За время движения света от диска до зеркала и обратно:

поворот диска составляет угол

Зная расстояние L, угловую скорость диска ω и угол △φ, при котором появляется свет, можно получить скорость света. Физо получил значение скорости, равное с=(315300500) км/с. Примерно такими же методами экспериментаторы получали уточненное значение скорости света с = (298000500) км/с (1862 г.), затем с=(2997964)км/с (А. Майкельсон в 1927 и 1932 г.г.). Позже Бергстранд получил - с=(299793.10.3) км/с.

Отметим здесь один из наиболее точных способов измерения скорости света - метод объемного резонатора, основная идея которого состоит в образовании стоячей световой волны и вычислении числа полуволн на длине резонатора. Основные соотношения между скоростью света с, длиной волны λ, периодом Т и частотой ν имеют вид:

Здесь также введена круговая частота, которая есть не что иное, как угловая скорость вращения ω амплитуды, если колебания представить как проекцию вращательного движения на ось. В случае образования световой стоячей волны на длине резонатора укладывается целое число полуволн. Находя это число и пользуясь соотношениями (*), можно определить скорость света.

Последние достижения (1978 г.) дали для скорости света следующее значение с=299792.458 км/с = (299792458 1,2) м/с.

1.4. Опыты по распространению света в среде.

1.4.1. Опыт Армана Физо.

Опыт Армана Физо (1851). Физо рассматривал распространение света в движущейся среде. Для этого пропускал луч света через стоячую и текущую воду и с помощью явления интерференции света сравнивал интерференционные картины, по анализу которых можно было судить об изменении скорости распространения света (см.рисунок 2.4). Два луча света, отразившись от полупрозрачного зеркала (луч 1) и пройдя его (луч 2) проходят дважды через трубу с водой и затем создают интерференционную картину на экране. Сначала измеряют в стоячей воде, а затем в текущей со скоростью V.

При этом один луч (1) движется по течению, а второй (2) - против течения воды. Происходит смещение полос интерференции вследствие изменения разности хода двух лучей. Разность хода лучей измеряется и по ней находится изменение скоростей распространения света. Скорость света в неподвижной среде ĉ зависит от показателя преломления среды п:

По принципу относительности Галилея для наблюдателя, относительно которого свет движется в среде, скорость должна быть равна:

Экспериментально Физо установил, что имеется коэффициент при скорости воды V и поэтому формула выглядит следующим образом:

где * - коэффициент увлечения света движущейся средой:

Таким образом, эксперимент Физо показал, что классическое правило сложения скоростей неприменимо при распространении света в движущейся среде, т.е. свет только частично увлекается движущейся средой. Опыт Физо сыграл важную роль при построении электродинамики движущихся сред.

Он послужил обоснованием СТО, где коэффициент * получается из закона сложения скоростей (если ограничиться первым порядком точности по малой величине ν/c). Вывод, который следует из этого опыта, состоит в том, что классические (Галилеевские) преобразования неприменимы при распространении света.

1.4.2. Усовершенствование Фуко.

Когда Физо объявил о результате своего измерения, ученые усомнились в достоверности этой колоссальной цифры, согласно которой свет доходит от Солнца до Земли за 8 минут и может облететь Землю за восьмую долю секунды. Казалось невероятным, чтобы человек смог измерить столь огромную скорость такими примитивными инструментами. Свет проходит восемь с лишним километров между зеркалами Физо за 1 / 36000 секунды? Невозможно, говорили многие. Однако цифра, полученная Физо, была весьма близка к результату Рёмера. Вряд ли это могло быть простым совпадением.

Тринадцать лет спустя, когда скептики все еще продолжали сомневаться и отпускать иронические замечания, Жан Бернар Леон Фуко, сын парижского издателя, одно время готовившийся стать врачом, определил скорость света несколько иным способом. Он несколько лет проработал вместе с Физо и много размышлял над тем, как усовершенствовать его опыт. Вместо зубчатого колеса Фуко применил вращающееся зеркало.

Рис. 3. Установка Фуко.

После некоторых усовершенствований Майкельсон использовал это устройство для определения скорости света. В этом устройстве зубчатое колесо заменено вращающимся плоским зеркалом C. Если зеркало C неподвижно или очень медленно поворачивается, свет отражается на полупрозрачное зеркало B по направлению, указанному сплошной линией. Когда зеркало быстро вращается, отраженный луч смещается в положение, обозначенное пунктирной линией. Глядя в окуляр, наблюдатель мог измерить смещение луча. Это измерение давало ему удвоенную величину угла α, т.е. угла поворота зеркала за то время, пока луч света шел от C к вогнутому зеркалу A и обратно к C. Зная скорость вращения зеркала C, расстояние от A до C и угол поворота зеркала C за это время, можно было вычислить скорость света.

Лабораторные методы определения скорости света представляют собой, по существу, усовершенствования метода Галилея.

а) Метод прерываний.

Физо (1849 г.) выполнил впервые определение скорости света в лабораторных условиях. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путём регулярного прерывания светового потока (зубчатое колесо). Схема опыта Физо изображена на рис. 9.3. Свет от источника S идёт между зубьями вращающегося колеса W к зеркалу М и, отразившись обратно, должен вновь пройти между зубьями к наблюдателю. Для удобства окуляр Е , служащий для наблюдения, помещается против а , а свет поворачивается от S к W при помощи полупрозрачного зеркала N . Если колесо вращается, и притом с такой угловой скорость, что за время движения света от а к М и обратно на месте зубьев окажутся прорези, и наоборот, то вернувшийся свет не будет пропущен к окуляру и наблюдатель не увидит света (первое затмение). При возрастании угловой скорости свет частично дойдёт до наблюдателя. Если ширина зубьев и просветов одинакова, то при двойной скорости будет максимум света, при тройной – второе затмение и т.д. Зная расстояние аМ =D , число зубьев z , угловую скорость вращения (число оборотов в секунду) n , можно вычислить скорость света.

Рис. 9.3. Схема опыта метода прерываний.

Или с =2Dzn.

Главная трудность определения лежит в точном установлении момента затмения. Точность повышается при увеличении расстояния D и при скоростях прерываний, позволяющих наблюдать затмения высших порядков. Так, Перротен вёл свои наблюдения при D =46 км и наблюдал затмение 32-го порядка. При этих условиях требуются светосильные установки, чистый воздух (наблюдения в горах), хорошая оптика, сильный источник света.

В последнее время вместо вращающегося колеса с успехом применяют другие, более совершенные методы прерывания света.

б) Метод вращающегося зеркала.

Фуко (1862 г.) успешно осуществил второй метод, принцип которого ещё раньше (1838 г.) был предложен Араго с целью сравнения скорости света в воздухе со скоростью света в других средах (вода). Метод основан на очень тщательных измерениях малых промежутков времени при помощи вращающегося зеркала. Схема опыта ясна из рис. 9.4. Свет от источника S направляется при помощи объектива L на вращающееся зеркало R , отражается от него в направлении второго зеркала С и идёт обратно, проходя путь 2CR =2D за время t . Время это оценивается по углу поворота зеркала R , скорость вращения которого точно известна; угол же поворота определяется из измерения смещения зайчика, даваемого возвратившимся светом. Измерения производятся при помощи окуляра Е и полупрозрачной пластинки М , играющей ту же роль, что и в предыдущем методе; S 1 – положение зайчика при неподвижном зеркале R , S" 1 – при вращении зеркала. Важной особенность установки Фуко явилось применение в качестве зеркала С вогнутого сферического зеркала, с центром кривизны, лежащим на оси вращения R . Благодаря этому свет, отражённый от R к С , всегда попадал обратно на R ; в случае же применения плоского зеркала С это происходило бы лишь при определённой взаимной ориентации R и С , когда ось отражённого конуса лучей располагается нормально к С .



Фуко в соответствии с первоначальным замыслом Араго осуществил при помощи своего прибора также и определение скорости света в воде, ибо ему удалось уменьшить расстояние до 4 м, сообщив зеркалу 800 оборотов в секунду. Измерения Фуко показали, что скорость света в воде меньше, чем в воздухе, в соответствии с представлениями волновой теории света.

Последняя (1926 г.) установка Майкельсона была выполнена между двумя горными вершинами, так что в результате получено расстояние D » 35,4 км (точнее, 35 373,21 м). Зеркалом служила восьмигранная стальная призма, вращающаяся со скоростью 528 об/с.

Время, за которое свет совершал полный путь, равнялось 0,00023 с, так что зеркало успевало повернуться на 1/8 оборота и свет падал на грань призмы. Таким образом, смещение зайчика было сравнительно незначительным, и определение его положения играло роль поправки, а не основной измеряемой величины, как в первых опытах Фуко, где всё смещение достигало лишь 0,7 мм.

Были произведены также весьма точные измерения скорости распространения радиоволн. При этом были использованы радиогеодезические измерения, т.е. определение расстояния, между двумя пунктами с помощью радиосигналов параллельно с точными триангуляционными измерениями. Лучшая полученная таким методом величина, приведённая к вакууму, с=299 792±2,4 км/с. Наконец, скорость радиоволн была определена по методу стоячих волн, образованных в цилиндрическом резонаторе. Теория позволяет связать данные о размерах резонатора и резонансной частоте его со скоростью волн. Опыты делались с эвакуированным резонатором, так что приведения к вакууму не требовалось. Лучшее значение, полученное по этому методу, с=299 792,5 ± 3,4 км/с.

в) Фазовая и групповая скорости света.

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен n =sini /sinr =υ 2 /υ 1 , а в волновой теории n =sini /sinr =υ 1 /υ 2 , где υ 1 – скорость света в первой среде, а υ 2 – скорость света во второй среде. Ещё Араго видел в этом различии возможность experimentum crucis и предложил идею опыта, который был выполнен позднее Фуко, нашедшим для отношения скоростей света в воздухе и воде значение, близкое к , как следует по теории Гюйгенса, а не , как вытекает из теории Ньютона.

Обычное определение показателя преломления n =sini /sinr =υ 1 /υ 2 из изменения направления волновой нормали на границе двух сред даёт отношение фазовых скоростей волны в этих двух средах. Однако понятие фазовой скорости применимо только к строго монохроматическим волнам, которые реально не осуществимы, так как они должны были бы существовать неограниченно долго во времени и выть бесконечно протяжёнными в пространстве.

В действительности мы всегда имеем более или менее сложный импульс, ограниченный во времени и пространстве. При наблюдении такого импульса мы можем выделять какое-нибудь определённое его место, например, место максимальной протяжённости того электрического или магнитного поля, которое представляет собой электромагнитный импульс. Скорость импульса можно отождествить со скоростью распространения какой-либо точки, например, точки максимальной напряжённости поля.

Однако среда (за исключением вакуума) обычно характеризуется дисперсией, т.е. монохроматические волны распространяются с различными фазовыми скоростями, зависящими от их длины, и импульс начинает деформироваться. В таком случае вопрос о скорости импульса становится более сложным. Если дисперсия не очень велика, то деформация импульса происходит медленно и мы можем следить за перемещением определённой амплитуды поля в волновом импульсе, например, максимальной амплитуды поля. Однако скорость перемещения импульса, названная Рэлеем групповой скоростью , будет отличаться от фазовой скорости любой из составляющих его монохроматических волн.

Для простоты вычислений мы будем представлять себе импульс как совокупность двух близких по частоте синусоид одинаковой амплитуды, а не как совокупность бесконечного числа близких синусоид. При этом упрощении основные черты явления сохраняются. Итак, наш импульс, или, как принято говорить, группа волн, составлен из двух волн.

где амплитуды приняты равными, а частоты и длины волн мало отличаются друг от друга, т.е.

где и – малые величины. Импульс (группа волн) у есть сумма у 1 и у 2 , т.е.

Вводя обозначения , представим наш импульс в виде , где А не постоянно, но меняется во времени и пространстве, однако меняется медленно, ибо δω и δk – малые (по сравнению с ω 0 и κ 0) величины. Поэтому, допуская известную небрежность речи, мы можем считать наш импульс синусоидой с медленно изменяющейся амплитудой.

Таким образом, скорость импульса (группы), которую, согласно Рэлею, называют групповой скоростью , есть скорость перемещения амплитуды , а, следовательно, и энергии , переносимой движущимся импульсом.

Итак, монохроматическая волна характеризуется фазовой скоростью υ=ω /κ , означающей скорость перемещения фазы , а импульс характеризуется групповой скорость u=dω /, соответствующей скорости распространения энергии поля этого импульса.

Нетрудно найти связь между u и υ . В самом деле,

или, так как и, следовательно, ,

т.е. окончательно

(формула Рэлея).

Различие между u и υ тем значительнее, чем больше дисперсия /. В отсутствие дисперсии (/=0) имеем u=υ . Этот случай, как уже сказано, имеет место лишь для вакуума.

Рэлей показал, что в известных методах определения скорости света мы, по самой сущности методики, имеем дело не с непрерывно длящейся волной, а разбиваем её на малые отрезки. Зубчатое колесо и другие прерыватели в методе прерываний дают ослабляющееся и нарастающее световое возбуждение, т.е. группу волн. Аналогично происходит дело и в методе Рёмера, где свет прерывается периодическими затемнениями. В методе вращающегося зеркала свет также перестаёт достигать наблюдателя при достаточном повороте зеркала. Во всех этих случаях мы в диспергирующей среде измеряем групповую скорость, а не фазовую.

Рэлей полагал, что в методе аберрации света мы измеряем непосредственную фазовую скорость, ибо там свет не прерывается искусственно. Однако Эренфест (1910 г.) показал, что наблюдение аберрации света в принципе неотличимо от метода Физо, т.е. тоже даёт групповую скорость. Действительно, аберрационный опыт можно свести к следующему. На общей оси жёстко закреплены два диска с отверстиями. Свет посылается по линии, соединяющей эти отверстия, и достигает наблюдателя. Приведём весь аппарат в быстрое вращение. Так как скорость света конечна, то свет не будет проходить через второе отверстие. Чтобы пропустить свет, необходимо повернуть один диск относительно другого на угол, определяемый отношением скоростей дисков и света. Это – типичный аберрационный опыт; однако он ничем не отличается от опыта Физо, в котором вместо двух вращающихся дисков с отверстиями фигурирует один диск и зеркало для поворота лучей, т.е. по существу два диска: реальный и его отражение в неподвижном зеркале. Итак, метод аберрации даёт то же, что и метод прерываний, т.е. групповую скорость.

Таким образом, в опытах Майкельсона и с водой, и с сероуглеродом измерялось отношение групповых, а не фазовых скоростей.




Скорость света и методы ее измерения. Астрономический метод измерения скорости света Впервые осуществлен датчанином Олафом Ремером в 1676 г. Когда Земля очень близко подошла к Юпитеру (на расстояние L 1), промежуток времени между двумя появлениями спутника Ио оказался 42 ч 28 мин; когда же Земля удалилась от Юпитера на расстояние L 2, спутник стал выходить из тени Юпитера на 22 мин. позднее. Объяснение Ремера: это запаздывание происходит за счет того, что свет проходит дополнительное расстояние Δ l= l 2 – l 1.



Лабораторный метод измерения скорости света Метод Физо (1849). Свет падает на полупрозрачную пластину и отражается, проходя через вращающееся зубчатое колесо. Пучок, отраженный от зеркала, может попасть к наблюдателю, только пройдя между зубьями. Если знать скорость вращения зубчатого колеса, расстояние между зубьями и расстояние между колесом и зеркалом, то можно рассчитать скорость света. Метод Фуко – вместо зубчатого колеса вращающаяся зеркальная восьмигранная призма.


С= км/с.




Можно измерить частоту колебаний волны и независимо – длину волны (особенно удобно в радиодиапазоне), а затем рассчитать скорость света по формуле. с=λں По современным данным, в вакууме с=(,2 ± 0,8) м/с.

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.


Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: