Почему разрушаются мосты? Явление резонанса. О физике твердотельных колебательных систем и о разрушительном действии резонанса Физическое определение и привязка к объектам

14 августа этого года обрушился автомобильный мост в Генуе, жертвами катастрофы по последним данным стали 42 человека. Пока инженеры и следователи выясняют, почему и как это произошло, «Вокруг света» решил вспомнить и перечислить основные возможные причины обрушения мостов и заметные примеры таких обрушений из прошлого.

Человечество стало строить мосты более трех тысяч лет назад, что позволяет мосту претендовать на почетное звание самого . Более того, многие мосты, построенные тысячи лет назад - особенно римлянами, которые достигли удивительных высот в области мостостроения, - до сих пор стоят и даже выполняют свои функции.

Но, как и любое инженерное сооружение, мост может разрушиться, что нередко случалось за последние три тысячи лет. И хорошо еще, если прямо в процессе строительства. Хуже, если это происходит по окончании работ.

Почему же разрушаются мосты? Часто причин может быть несколько одновременно, и они, удачно дополняя друг друга, приводят к катастрофе. Например, инженер неправильно провел расчеты, строители сэкономили на материалах или нарушили технологии строительства, затем мост неправильно эксплуатировался и, в конце концов, при прохождении слишком тяжело нагруженного поезда или большого числа машин или людей в плохую погоду обрушился. Тем не менее в большинстве случаев одна из причин выступает в качестве основной.

Ошибки конструкции и эксплуатации и чрезмерный износ

Пожалуй, ошибки в конструкции можно назвать первейшей причиной разрушения всех инженерных сооружений - будь то колокольни, крепостные стены или мосты. Причем проблема может проявиться сразу, а может при определенных условиях по окончании строительства. Именно это случилось, к примеру, с железнодорожным мостом через Ферт-оф-Тей (эстуарий реки Тей) в Шотландии в 1879 году. Инженер Томас Бауч, автор проекта, посвященный за него в рыцари, не учел при создании проекта ветровую нагрузку и запланировал опоры, поддерживавшие фермы моста, слишком тонкими. К этому прибавилось низкое качество материалов и работ. В результате в сильнейший шторм (10 из 12 баллов по шкале Бофорта) вечером 28 декабря 1879 года (через два года после окончания строительства) поезд с 75 людьми въехал на мост и вскоре оказался в воде: пролеты самого длинного на тот момент моста в мире (около 3000 метров) рухнули в реку вместе с вагонами и паровозом.

Так мост выглядел спустя несколько недель после обрушения. Сегодня его конструкции разобраны, однако остатки опор еще видны

А вот пользователям подвесного автомобильного моста через пролив Такома-Нэрроуз между городом Такома в штате Вашингтон (США) и полуостровом Китсуп повезло больше. О проблемах с этим длинным и довольно изящным сооружением стало известно еще на этапе строительства: рабочие, возводившие мост, заметили, что, когда в проливе поднимался боковой ветер, дорожное полотно начинало вибрировать и выгибаться. За это они даже прозвали мост «скачущей Герти» (Gallping Gertie) . Это, впрочем, не помешало довести строительство до конца и торжественно открыть мост 1 июля 1940 года. Более того, хотя колебания дорожного полотна при ветре и были заметны невооруженным глазом и сразу стали вызывать опасения инженеров, инспекторов надзорных органов и водителей, мост считался вполне безопасным. Одновременно с его эксплуатацией разрабатывались варианты решения проблемы. А в чем же была проблема? В том, что при строительстве были использованы передовые на тот момент сплошные балки из углеродистой стали, поверх которых было постелено дорожное полотно. Если бы использовались более привычные сквозные балки, ветер обдувавший мост, проходил бы через них, а сплошные балки отклоняли потоки воздуха выше и ниже и таким образом приводили дорожное полотно в движение. Проекты по исправлению недостатка даже не успели до конца продумать: 7 ноября того же, 1940 года ветер в проливе поднялся до сильных, но не катастрофических 18 м/с (около 64 км/ч; 8 баллов по шкале Бофорта), и мост в конце концов не выдержал: тросы лопнули и дорожное полотно вместе с автомобилем чудом спасшегося водителя упали в пролив; погибла одна собака, случайно выбежавшая на мост. А мы получили уникальные кадры - их снял местный житель, оказавшийся в тот день у моста с камерой.

Резонанс

Одна из самых известных причин разрушения мостов, хотя и не самая распространенная, - это резонанс, то есть явление резкого нарастания амплитуды колебаний системы (в нашем случае - конструкции моста) при периодическом внешнем воздействии. В школе это явление даже объясняют на уроках физики, приводя в пример историю о том, как отряд солдат, шагая в ногу, может вызвать обрушение моста. По сути, тут сходятся две причины: ошибки в конструкции и неправильная эксплуатация; порою может подключаться и плохая погода. Именно это случилось с упомянутым выше мостом через Такома-Нэрроуз.

Резонанс часто называют причиной обрушения цепного Египетского моста в Санкт-Петербурге 2 февраля 1905 года при следовании лейб-гвардии конного-гренадерского полка, хотя комиссия, расследовавшая причины произошедшего, указала, что виновато низкое качество железа цепи

К сожалению, не все катастрофы такого рода обходятся без человеческих жертв. Рекордным по количеству погибших стало разрушение из-за резонанса подвесного моста через реку Мен в городе Анжер в центральной части Франции 16 апреля 1850 года, когда погибло более 200 солдат, шедших по мосту в грозу и при сильном ветре. А одним из первых зафиксированных случаев такого рода стало обрушение Броутонского моста в Англии недалеко от Манчестера 19 годами ранее. Тогда никто не погиб, хотя два десятка из 74 солдат пострадали при падении в воду, а в армии появилась команда break step («идти не в ногу»), применявшаяся при пересечении мостов, особенно подвесных, в большей степени подверженных резонансу. Солдаты в Анжере, кстати, выполняли такую команду, но это не уберегло от беды.

Превышение допустимой нагрузки

Строго говоря, превышение допустимой нагрузки - тоже нарушение правил эксплуатации, хотя, как правило, оно является следствием не небрежения такими правилами и побуждениями здравого смысла, как несвоевременный ремонт или проведение ремонтных работ с нарушением регламента (погубившими в 2011 году 710-метровый мост через реку Махакам в индонезийской части острова Борнео), а стечением обстоятельств. Именно так можно расценивать, например, то, что произошло в 17:00 по местному времени в пятницу 15 декабря 1967 года с Серебряным мостом (Silver Bridge) через реку Огайо, соединявшим штаты Огайо и Западная Виргиния. Мост, построенный в 1928 году, являлся частью шоссе U. S. Route 35 и пользовался большой популярностью, выражавшейся в том, что через него регулярно проходил плотный транспортный поток. В предпраздничные недели трафик возрастал даже больше обычного, а трагедия и вовсе произошла вечером в пятницу за десять дней до Рождества. Мост рухнул из-за разрушения одной из стержневых подвесок, которыми дорожное полотно крепилось к тросам, а за нею стали рушиться и остальные конструкции моста - все разрушение заняло около минуты. В результате погибли 46 человек.

Самый точный список погибших при крушении моста в Диксоне, штат Иллинойс, насчитывает 46 имен, причем женских среди них 37, то есть 80%. Больше того, 19 погибших были моложе 21 года. Причина такой диспропорции в том, что женщин и детей пропустили вперед, чтобы им было лучше видно церемонию крещения в водах реки - как раз на ту боковую пешеходную дорожку, где была сконцентрирована наибольшая масса. Тяжелые платья, посыпавшиеся сверху люди и конструкции злополучного моста довершили дело

Другой пример тоже из Америки - из города Диксон, штат Иллинойс. Начало мая 1874 года было теплым и солнечным, поэтому пастор местной баптисткой церкви решил провести в первое же воскресенье месяца, 4-го числа, церемонию крещения в водах реки Рок шестерых новых членов общины. Удобное место было вблизи моста, а такие церемонии обычно привлекали внимание горожан (альтернативных развлечений в провинциальном городе с населением чуть больше 4000 человек в 1874 году было немного). Мост же был построен пятью годами ранее и имел пользовавшуюся популярностью новую для тех лет решетчатую конструкцию, позволявшую собирать переправы большой длины из коротких металлических деталей и, следовательно, тратить меньше денег и возводить мосты в труднодоступных районах.

Утром в воскресенье на мосту собралось от 150 до 200 человек, все одетые по-воскресному, причем больше всего людей было сконцентрировано с одного края моста и в границах одного пролета. Пастор взял театральную паузу перед погружением в воды реки крещаемого. Вдруг в наступившей тишине послышался громкий скрип, и пролет моста стал валиться вместе с собравшимися на нем людьми (мужчины, женщины в тяжелых платьях с кринолинами и нижними юбками, дети, в том числе маленькие), которые полетели в воду с высоты более пяти метров. Погибло около 50 человек. Официально причиной случившегося назвали конструкцию моста, однако трагедия не произошла бы, если бы он не оказался перегружен, притом неравномерно.

Военные действия и терроризм

Во всех выше описанных случаях мосты разрушались из-за непреднамеренных действий людей. Но так бывает не всегда, нередко люди разрушают построенные другими людьми переправы. Чаще всего в истории человечества так происходило во время войн, и наибольшее количество мостов было разрушено в XX веке во время Второй мировой войны авиаударами или артобстрелами - либо для того чтобы остановить продвижение войск, либо чтобы нарушить экономическую деятельность противника. Так, мост Гогенцоллернов, построенный в 1907–1911 годах в центре Кельна, позволял пересекать Рейн автомобильному и железнодорожному транспорту и пешеходам и потому считался важнейшим элементом инфраструктуры Третьего рейха - во время войны это был самый загруженный железнодорожный мост в Германии. Неудивительно, что уже с 1942 года союзники старались уничтожить его авианалетами. Впрочем, полностью вывести его из строя с воздуха им так и не удалось - мост рухнул в воды Рейна только 6 марта 1945-го, когда его подорвали американские саперы.

Разрушенный за два месяца до окончания войны мост Гогенцоллернов (на фото в центре) начали восстанавливать вскоре после окончании боевых действий в Германии. И в 1948 году уже запустили железнодорожное движение по нему. Автомобильную линию пустили по другому маршруту, а слева и справа от путей сейчас устроены пешеходно-велосипедные дорожки, с которых открывается великолепный вид на город в целом и на Кельнский собор в частности

Однако и после окончания Второй мировой мосты продолжали гибнуть от бомбардировок с воздуха и подрывов - эта судьба постигла, например, весьма красивый вантовый автомобильный мост Свободы в сербском городе Нови-Сад в 1999 году во время натовской военной операции против Югославии (мост, впрочем, восстановили в 2005-м).

Обрушения мостов в литературе

Мост нередко становился героем литературных произведений, причем в некоторых из них описывались как раз разрушения переправы. Так, шотландский поэт второй половины XIX века Уильям Макгонаголл написал поэму «Крушение моста через реку Тей», о котором мы говорили выше. Поэма знаменита тем, что считается одним из худших стихотворений в истории британской литературы. У писателя Арчибальда Кронина в романе «Замок Броуди» это событие описано хотя и в прозе, но куда лучше.

Впрочем, писателям совсем не обязательно описывать реально произошедшие вещи. Например, главный герой одного из лучших и наиболее популярных романов Эрнеста Хемингуэя «По ком звонит колокол» (восьмое место в списке ста лучших романов XX века, по версии французского издания Le Monde ) Роберт Джордан прибивается к отряду испанских партизан как раз для того, чтобы подорвать стратегически важный мост (спойлер: подрывает и погибает), притом автор утверждал, что все события в романе вымышленные.

Однако самое большое внимание обрушению моста, пожалуй, уделено в романе американского писателя Торнтона Уайлдера «Мост короля Людовика Святого», написанном в 1927 году. В центре повествования обрушение построенного инками столетнего подвесного моста в Перу на дороге между Лимой и Куско в 1714 году как раз в тот момент, когда по нему проходили пять незнакомых друг с другом человек; все они погибли. Выяснением, почему именно эти люди оказались на мосту именно в тот неудачный момент, и занимается свидетель несчастья монах-францисканец Юнипер, от имени которого ведется повествование.


Инки сооружали подвесные мосты из прочных лиан и дерева над реками и ущельями. Несмотря на ненадежный (с современной точки зрения) внешний вид, такие мосты выдерживали прохождение не только людей, но навьюченных лам, и при должном уходе и своевременном ремонте служили столетиями

Стихийное бедствие

В эту категорию причин попадают и наводнения и внезапные резкие подъемы воды, попросту смывающие мост или разрушающие его опоры и почву под ними, и землетрясения, а также оползни. Именно последние стали причиной обрушения моста через каньон Пфайффер (глубина 98 метров) на Шоссе 1 в Калифорнии в марте 2017 года. В течение месяца в районе моста выпало более 1500 мм осадков, которые вызвали смещение толстого слоя почвы на склоне каньона вместе с опорой моста, врытой в этот склон. К счастью, на мосту в тот момент никого не было.


Мост через реку Кинзу высотой 92 метра частично разрушился после встречи с торнадо в 2003-м. До обрушения его длина составляла 625 метров, он был 4-м по высоте мостом в США. В 1977 году сооружение внесли в Национальный реестр исторических мест США, а в 1982-м - в Список исторических гражданских инженерных достопримечательностей США

Еще один, впрочем довольно экзотический, вариант развития событий - торнадо. Именно он уничтожил знаменитый железнодорожный мост через реку Кинзу в штате Пенсильвания (США) - памятник инженерной мысли, построенный в 1883 году и прослуживший до 1963-го, а потом ставший главной достопримечательностью парка Kinzua Bridge State Park . А 21 июля 2003 года на парк налетел торнадо, ударил в мост и повалил 11 из 20 его опор - 120-летние конструкции не выдержали ветра скоростью выше 150 км/ч.

Столкновение

Отличный способ обрушить мост - врезаться в него, причем для наибольшего успеха этого предприятия стоит метить в опору. Хотя можно при желании попытаться снести и пролет, например устремившись под мост на транспортном средстве большей высоты, чем сам пролет. Надо сказать, что в большинстве случаев мост побеждает (см. так называемый «Мост дураков» в Санкт-Петербурге), однако не всегда, как случилось с мостом Альмё, соединявшим шведский остров Чёрн с материком. Это красивое арочное сооружение (на момент постройки самый длинный в мире мост такого типа) было перекинуто через оживленный водный путь и простояло 20 лет без приключений, пока темной туманной ночью с 17 на 18 января 1980 года не встретилось с балкером MS Star Clipper . Тот, следуя в тяжелых навигационных условиях, прошел не по центру арочного пролета, задел арку и снес ее. Дорожное полотно и конструкции моста упали на мостик судна и разрушили его. Примечательно, что при этом на судне никто не пострадал. Но совсем без жертв, к сожалению, не обошлось: в тумане несколько автомобилей на полном ходу выехали на мост со стороны Чёрна и, не заметив, что моста-то и нет, рухнули с него в ледяные воды пролива - погибли восемь человек. Жертв могло бы быть больше, если бы следовавший со стороны континента водитель грузовика не заметил, что заграждения внезапно исчезли, и не успел затормозить в метре от обрыва, заблокировав дорогу.

При столкновении баржи с мостом на шоссе I-40 в 2002 году в США непосредственно от удара никто не пострадал, но восемь легковых и три грузовых автомобиля успели упасть в воду - погибли 14 человек, 11 получили ранения

И все же более надежный способ снести мост - это врезаться в опору и желательно на полном ходу, как это сделала груженая баржа Robert Y. Love в водохранилище имени Керра на реке Арканзас в штате Оклахома, США. Ее рулевой упал в обморок за штурвалом, и неуправляемое судно врезалось в одну из опор автомобильного моста и снесло ее, вызвав обрушение 177-метровой секции пролета. Как и в случае с мостом Альмё, жертвами крушения стали водители автомобилей, не успевшие затормозить на краю (дело происходило майским утром).

Фото: Wikimedia Commons, Stephen Lux / Getty Images, Posnov / Getty Images

Явление резонанса наблюдается в механических колебательных системах, которые подвергаются действию на них сторонних сил периодически. Эти силы передают колебательной системе некую энергию, которая переходит в энергию движения, т.е. система раскачивается и амплитуда колебаний возрастает и становится максимальной, когда внешняя сила действует на колебательную систему с такой же частотой, какая частота колебаний у самой системы – это и есть РЕЗОНАНС.

Висячие мосты обладают рядом неоспоримых достоинств по сравнению с конструкциями мостов других типов. Однако уже давно было замечено, что висячие мосты весьма ненадежны при сильном ветре. Одной из крупнейших в истории мостостроения катастроф стало обрушение моста через реку Такома (США) 7 ноября 1940 года. Строительство этого моста было закончено летом 1940 года. Пролет, третий в мире по длине, имел длину 854м. Большого движения не ожидалось и мост был построен очень узким - шириной 11,9м. Проезжая часть была рассчитана на 2 ряда автомобилей. Полотно дороги было подвешено на двух стальных канатах со стрелой провеса 70,7м.
Сразу после постройки была обнаружена большая чувствительность моста к действию ветра, амплитуды (размахи) колебаний моста достигали 1,5 м. Было сделано несколько попыток устранить эти большие колебания путем введения дополнительных связей и установки гидравлических демпферов (амортизаторов) на пилонах; так называются столбы, поддерживающие основные (несущие) тросы в висячих мостах. Но это не предотвратило катастрофы.
Начиная с 8 часов утра 7 ноября наблюдались не очень сильные вертикальные многоузловые (в форме нескольких волн) изгибные колебания с частотой 0,8 Гц. Примечательно, что ветер имел не очень большую скорость, около 17 м/с, тогда как до этого были случаи, когда мост выдерживал более сильный ветер. Около 10 часов утра скорость ветра несколько возросла (до 18,7 м/с), и установились одноузловые (в форме одной волны) изгибно-крутильные колебания со значительно меньшей частотой (0,2 Гц) и весьма большими амплитудами. Когда закрутка достигала максимума, проезжая часть наклонялась к горизонту под углом 45°. Резкое изменение частоты колебаний произошло, по-видимому, вследствие обрыва каких-то важных связей в конструкции. Мост выдерживал эти колебания около часа, после чего большой участок проезжей части полотна отломился и упал в воду. Весь процесс был заснят на кинопленку, что явилось ценным материалом для исследования причин обрушения.
Катастрофа привлекла огромное внимание исследований. Уже через две недели после свершившегося известный механик Т. фон Карман дал объяснение причин катастрофы и даже указал скорость ветра, при которой это может случиться. Разрушение произошло при скорости ветра порядка 18 - 19 м/с, а Т.фон Карман расчетом получил 22,2 м/с. Так что даже это можно назвать успехом механика.
Какие выводы отсюда сделали механики? Сейчас через реку Такома построен другой мост. Его ширина увеличена более чем в 1,5 раза и составляет 18 м, изменено так же сечение проезжей части. Кроме того, сплошные балки заменены сквозными фермами, что значительно уменьшает силу давления ветра. Современные висячие мосты - это легкие конструкции, подвешенные на стальных канатах, называемых вантами. Они выдерживают большие ветры и прочие нагрузки и нормально функционирует уже много лет. Известно, что таких катастроф, какая была с Такомским мостом, здесь произойти не может. Механики сумели понять, что может произойти и как это предотвратить.
Резонанс может произойти, когда большая масса, например, солдат строем, чеканя шаг, должна перейти по мосту, при этом, звучит команда - отставить марш, люди переходят мост, как обычные пешеходы... Станки с вращающимися частями устанавливают на массивные основания-фундаменты, чтобы при раскачивании станка (которое не избежать) не произошло явление резонанса у фундамента и он не разрушился.
Явление резонанса - основа радиотелефонной связи, телесвязи.

Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Система полумост с ШИМ

Блок схема показана ниже:

Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.

В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики , что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.

Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до I max .

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:

Данная схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5U пит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.

Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).

Полный мост с дросселем рассеивания

Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. , при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

Вы думали, что дело в «резонансе»? Подумайте ещё.

«По крайней мере, шесть фонарных столбов были вырваны, пока я смотрел. Несколько минут спустя я увидел, что один из прогонов увело в сторону. Хотя мост и качался под углом в 45 градусов, я думал, что всё обойдётся. Но этого не произошло». – Берт Фаркарсон.

Обрушение моста Такома-Нэрроуз утром 7 ноября 1940 года - самый яркий пример захватывающего обрушения моста в наше время. Третий по величине висячий мост в мире, уступающий только мосту Джорджа Вашингтона и мосту Золотые Ворота, он соединял Такому с полуостровом Китсап в заливе Пьюджет и открылся общественности 1 июля 1940 года. Всего четыре месяца спустя, при определённых условиях ветра, мост вошёл в резонанс, что заставило его неудержимо колебаться. После часа колебаний из строя вышла его центральная часть, и весь мост был уничтожен. Это стало свидетельством существования эффекта резонанса и с тех пор использовалось в качестве классического примера в физике и на технических занятиях по всей стране. К сожалению, вся эта история – настоящий миф.

У каждой физической системы или объекта существует естественная, свойственная ему резонансная частота. У качелей, например, существует определённая частота, с помощью которой вы можете управлять ими; в детстве вы учитесь раскачивать себя одновременно с колебанием. Раскачиваясь слишком медленно или слишком быстро, вы никогда не создадите скорость, но если вы раскачиваетесь в правильном темпе, вы можете взлетать настолько высоко, насколько вам позволит ваша физическая подготовка. Резонансные частоты могут также иметь катастрофические последствия, если вы создадите слишком много вибрационной энергии в системе, которая не сможет её обработать, как например, определённые звуковые частоты способны заставить разбиться стакан.

Поэтому вполне логично предположить, что виновником разрушения моста стал именно резонанс. И это самая известная ловушка науки: когда вы находите объяснение, которое является простым, логичным и очевидным. Но в этом случае оно абсолютно неверно. Вы можете рассчитать резонансную частоту моста и понять, что не было никаких воздействий, способных привести к разрушению. Всё, что происходило в тот момент - продолжительный сильный ветер. На самом деле сам мост вообще не раскачивался в своей резонансной частоте!

Но то, что произошло на самом деле, было по-настоящему захватывающим и содержит уроки, которые мы не все учли – судя по мостам, созданных нами с тех пор.

Каждый раз, когда вы создаёте объект между двумя точками, он способен свободно перемещаться, вибрировать, колебаться и так далее. У него существует собственная реакция на внешние стимулы, точно так же, как струна гитары вибрирует в ответ на внешние раздражители. Именно это происходило с мостом большую часть времени: простые вибрации вверх и вниз от проезжающих по нему автомобилей, дуновения ветра и так далее. С ним происходило то, что происходило бы с любым висячим мостом, однако он подвергался более сильному воздействию из-за снижения расходов при проектировании его конструкции. Такие сооружения, как мосты, особенно хороши в потере этого вида энергии, поэтому самостоятельно они не могут создать угрозу разрушения.

Но ветер, дувший на мосту 7-го ноября, был более сильным и продолжительным, чем когда-либо прежде, он заставил сформироваться вихри. В малых количествах это не создало бы проблем, но посмотрите на эффекты этих вихрей в видео ниже.

Со временем они вызывают аэродинамическое явление, известное как «флаттер»: части конструкции под влиянием ветра начинают дополнительно раскачиваться. Это заставляет внешние части перемещаться перпендикулярно направлению ветра, что не совпадает по фазе с изменчивым движением моста. Явление флаттер, как известно, имело катастрофические последствия для самолётов, но никогда прежде не было замечено его влияния на мосты. По крайней мере, не до такой степени.

Когда начался эффект флаттер, один из стальных кабелей, поддерживающих мост, лопнул, перестав быть последним главным препятствием для этого явления. Это произошло, когда две стороны моста качались назад и вперёд в гармонии друг с другом, поэтому волнение усилилось. Продолжительный сильный ветер и созданные им вихри не могли уже остановить никакие силы, мост продолжал раскачиваться всё сильнее. Последние люди, оставшиеся на мосту, по большей части фотографы, были вынуждены бежать.


Но совсем не резонанс уничтожил мост, а скорее самопроизвольное раскачивание! Не имея возможности рассеять эту энергию, конструкция просто продолжала колебаться назад и вперёд, и этот процесс наносил ущерб подобно тому, который скручивание твёрдого объекта туда-сюда ослабляет его, в итоге приводя к поломке. Не резонанс виноват в разрушении моста, а простое отсутствие внимания ко всем эффектам, дешёвые строительные методы и нежелание просчитать все воздействующие силы.


Однако это не было полным провалом. Инженеры, которые исследовали разрушение, быстро начали понимать явление; в течение 10 лет новое ответвление науки: аэроупругость моста. Явление флаттер теперь изучено достаточно, и о нём нельзя забывать, чтобы добиться успеха. Два современных моста могла постичь та же участь, что и Такома-Нэрроуз – Мост Тысячелетия в Лондоне и Волгоградский мост в России тоже имели недостатки, связанные с эффектом флаттер, но они были исправлены в XXI веке.

Не вините резонанс в самом известном разрушении моста. Истинная причина более ужасна, и она может коснуться сотни мостов по всему миру, если мы забудем об эффекте флаттера, который может привести к разрушениям.

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: