Водородная связь физические свойства. Химия. Свойства твердых тел

Водородная связь. Само название связи этого типа подчеркивает, что в ее образовании принимает участие атом водорода. Водородные связи могут образовываться в тех случаях, когда атом водорода связан с электроотрицательным атомом, который смещает на себя электронное облако, создавая тем самым на водороде положительный заряд 6-К

Водородная связь - связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы. Водородная связь имеет частично электростатическую, частично донорно-акцепторную природу.

В качестве примера рассмотрим образование водородной связи между двумя молекулами воды. В Н 2 0 связи О-Н имеют заметный полярный характер с частичным отрицательным зарядом б- на кислороде. Атом водорода, наоборот, приобретает небольшой положительный заряд 6+ и может взаимодействовать с неподе- ленными парами электронов атома кислорода соседней молекулы воды:

Водородную связь обычно схематично изображают точками.

Взаимодействие между молекулами воды оказывается достаточно сильным - даже в парах воды присутствуют димеры и тримеры состава (Н 2 0) 2 , (Н 2 0) 3 и т. д. В растворах же могут возникать длинные цепи ассоциатов (Н 2 0) п:

О сравнительной способности атомов различных элементов образовывать водородные связи можно судить по температурам кипения или плавления их водородных соединений. Например, на рисунке 3.12 показаны температуры кипения водородных соединений элементов IV, V, VI и VII групп Периодической системы.

Ожидаемый ход изменения температур кипения водородных соединений, согласно молекулярным массам соединений, наблюдается только для элементов IV группы Периодической системы (СН 4 , SiH 4 , GeH 4 , SnH 4); в трех других рассмотренных группах обнаруживаются аномально высокие температуры кипения для NH 3 , HF и Н 2 0, что объясняется образованием водородных связей между молекулами этих веществ.

Казалось бы, наиболее прочные водородные связи должен образовывать HF (фтор - самый электроотрицательный элемент), однако у воды более высокая температура кипения (рис. 3.12). Объясняется это тем, что молекула воды может образовать две водородные связи, тогда как молекула фтороводорода - только одну.

Таким образом, водородные связи могут образоваться, если есть полярная связь Х-Н и свободная пара электронов атома элемента 2-го периода Периодической системы. Например, молекулы органических соединений, содержащие заместители -ОН, -СООН, -CONH 2 , -NH 2 и другие группы, часто ассоциированы вследствие

Рис. 3.12.

образования водородных связей; это типично для спиртов и органических кислот. Например, для уксусной кислоты водородные связи могут привести к объединению молекул в пары с образованием циклической димерной структуры, и молекулярная масса уксусной кислоты, измеренная по плотности пара, оказывается удвоенной (120 вместо 60).

Водородные связи могут возникать как между различными молекулами, так и внутри молекулы, если в ней имеются группы с донорной и акцепторной способностью. Так, именно внутримолекулярные водородные связи между полипептидными цепями играют определяющую роль в строении белковых молекул. Один из известных примеров - образование внутримолекулярных водородных связей в молекуле дезоксирибонуклеиновой кислоты (ДНК): молекула ДНК свернута в виде двойной спирали, и две нити этой двойной спирали удерживают друг друга водородными связями (см. § 31.3).

Можно привести еще один пример - образование внутримолекулярной водородной связи в молекуле 2-нитрофенола.

Энергии водородных связей по порядку величины обычно составляют 20-40 кДж/моль.

Ван-дер-ваальсовы связи. Вещества могут существовать в различных агрегатных состояниях в зависимости от внешних условий (температуры и давления; см. § 3.7). При температурах вблизи абсолютного нуля (0 К) все вещества находятся в твердом состоянии. Температура вещества, как известно, связана с кинетической энергией молекул (молекулы движутся с разными скоростями), при понижении температуры кинетическая энергия молекул уменьшается, увеличивается время движения молекулы без столкновения с другими молекулами (длина свободного пробега). Можно даже утверждать, что при низких температурах оказывается возможным «согласованное» движение электронов, подобно тому, как показано на рисунке 3.13.

Рис. 3.13.

При согласованном движении электронов в молекуле могут появляться наведенные диполи, и между ними возникают так называемые индукционные силы притяжения.

Взаимодействие посредством наведенных дипольных моментов и называют ван-дер-ваальсовой связью (или межмолекулярным взаимодействием). Энергия такой связи намного (в сотни раз) меньше энергии ковалентных, ионных или металлических связей.

Более того, в настоящее время принято распространять термин «ван-дер-ваальсовы» на все слабые межмолекулярные взаимодействия, которые включают взаимодействия трех типов: постоянный диполь-постоянный диполь, постоянный диполь-индуцирован- ный диполь и мгновенный диполь-индуцированный диполь. При этом водородную связь, которая, во-первых, намного сильнее и, во- вторых, бывает не только межмолекулярной, к ван-дер-ваальсовым взаимодействиям не относят.

Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н... В (чертой обозначена ковалентная связь, тремя точками - водородная связь).

Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов.

Они возникают, как правило, между атомами фтора, азота и кислорода (наиболее электроотрицательные элементы), реже - при участии атомов хлора, серы и других неметаллов. Прочные водородные связи образуются в таких жидких веществах, как вода, фтороводород, кислородсодержащие неорганические кислоты, карбоновые кислоты, фенолы, спирты, аммиак, амины. При кристаллизации водородные связи в этих веществах обычно сохраняются.

Зависимость физических свойств веществ с молекулярной структурой от характера межмолекулярного взаимодействия. Влияние водородной связи на свойства веществ.

Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества. Например, этиловый спирт C2H5OH, способный к ассоциации, кипит при +78,3°С, а диметиловый эфир СН3ОСН3, не образующий водородных связей, лишь при -24°С (молекулярная формула обоих веществ С2Н6О).

Образование Н-связей с молекулами растворителя способствует улучшению растворимости. Так, метиловый и этиловый спирты (CH3OH, С2Н5ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.

Внутримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства. Например, Н-связь внутри молекул салициловой кислоты повышает ее кислотность. Водородные связи играют исключительно важную роль в формировании пространственной структуры биополимеров (белков, полисахаридов, нуклеиновых кислот), что в значительной степени определяет их биологические функции.



Силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса). Ориентационное, индукционное и дисперсионное взаимодействие.

Межмолекулярное взаимодействие - взаимодействие между электрически нейтральными молекулами или атомами.

К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.

Ориентационное : Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. (энергия Кеезома) выражается соотношением:

E К = −2 μ 1 μ 2 / 4π ε 0 r 3 ,

где μ1 и μ2 - дипольные моменты взаимодействующих диполей, r - расстояние между ними. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).

Индукционное : Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного. Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы.

(энергия Дебая) определяется выражением:

E Д = −2 μ нав 2 γ / r 6 ,

где μ нав - момент наведенного диполя.

Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.

Дисперсионное : Между неполярными молекулами также может возникнуть притяжение. Электроны, которые находятся в постоянном движении, на миг могут оказаться окажется сосредоточенными с одной стороны молекулы, то есть неполярная частица станет полярной. Это вызывает перераспределение зарядов в соседних молекулах, и между ними устанавливаются кратковременные связи.

(энергия Лондона) дается соотношением:

E Л = −2 μ мгн 2 γ 2 / r 6 ,

где μ мгн - момент мгновенного диполя. Лондоновские силы притяжения между неполярными частицами (атомами, молекулами) являются весьма короткодействующими. Значения энергии такого притяжения зависят размеров частиц и числа электронов в наведенных диполях. Эти связи очень слабые - самые слабые из всех межмолекулярных взаимодействий. Однако они являются наиболее универсальными, так как возникают между любыми молекулами.

1.2 Примеры соединений с водородной связью

Во многих случаях, когда имеется сильная связь между молекулами или разными группами одной и той же молекулы, эту связь можно приписать атомам водорода, проявляющим двухвалентный характер. Таковы, например, димеры алифатических кислот, ион дифторида и димер HF, структура которых приведена на рисунке 1.1 .

Рисунок 1.1 Некоторые примеры структур с водородной связью

Водород служит в качестве связующего атома в другом важном классе соединений – бороводородах. Простейшим членом этого семейства является диборан (В 2 Н 6). Однако бороводороды обычно не рассматривают в качестве соединений с водородной связью, так как их нельзя разбить на фрагменты, представляющие собой стабильные молекулы . Рассмотрим эти соединения лишь для того, чтобы сопоставить их с комплексами с водородной связью.

Бороводороды были названы электронодефицитными молекулами (термин электронодефицитный в применении к бороводородам не совсем оправдан, так как во всех случаях электронов достаточно для заполнения всех связывающих молекулярных орбиталей), так как они не имеют достаточно электронов для образования того количества двухэлектронных связей, которое, по-видимому, подразумевается их молекулярной геометрией. Диборан имеет восемь связей В–Н, но только четырнадцать валентных электронов. Расчеты на основе метода молекулярных орбиталей показывают, что концевые связи представляют собой нормальные двухэлектронные связи, а мостиковые связи следует описывать как трехцентровые двухэлектронные связи .

Описание на основе метода молекулярных орбиталей иона дифторида полностью отличается от описания диборана, поскольку для образования мостиковых связей здесь имеются четыре электрона. Равновесная конфигурация молекулы линейная, причем водород находится посредине отрезка F–F. Две наивысшие заполненные молекулярные орбитали образованы в основном 2pσ -орбиталями фтора п ls-орбиталями водорода с некоторой добавкой 2s-орбиталей фтора. Низшая из двух орбиталей имеет симметрию σ g и является связывающей для всех трех атомов. Более высокая орбиталь σ u (ее узел приходится на атом водорода) – разрыхляющая по отношению к атомам фтора. Однако атомы фтора достаточно удалены друг от друга, так что разрыхляющий эффект мал, и орбиталь σ u имеет отрицательную энергию (т. е. связывает электроны), что обусловлено большой электроотрицательностью атома фтора .

Можно преобразовать σ g - и σ u -орбитали в эквивалентные орбитали θ 1 = σ g + σ u и θ 2 = σ g – σ u , локализованные на двух связях F–Н, что демонстрирует отличие от мостиков в бороводородах, орбитали которых не могут быть локализованы на связях .

Ион дифторида не типичен для соединений с водородными связями в том отношении, что атом водорода расположен посредине между двумя тяжелыми атомами. Обычно энергии водородных связей намного меньше, чем для иона дифторида, а водород более тесно связан с одним из атомов, чем с другим, как в димере муравьиной кислоты (рис. 1.1). В действительности геометрия двух компонентов, составляющих комплекс, немного отличается от их геометрии в изолированных состояниях .

Таблица 1.1 Энергии димеризации некоторых газофазных димеров с водородной связью

Димер

Энергия димеризации, кДж/моль -1

29±4
22±6
19±2
9±1
7±1

Обнаружено смещение кислотно-основного равновесия молекулярный комплекс ионная пара вправо при повышении полярности растворителя. Кроме указанных фиксируются и другие структурные и спектроскопические особенности водородных связей, которые используются, с одной стороны, для идентификации последних, а с другой – в расшифровке их электронной природы. Так как водородная связь возникает только в том...

Водородную связь от межмолекулярной. Если спектрально фиксируется образование Н-связей, а признаков ассоциации нет, это верное указание на внутримолекулярный характер водородной связи. Кроме того, межмолекулярная Н-связь (и ее спектральное проявление) исчезает при низкой концентрации вещества в нейтральном растворителе, тогда как внутримолекулярная Н-связь в этих условиях сохраняется. Водородные...

Длин химических связей молекулы растворителя, дипольный момент молекулы растворителя и вязкость, выражается следующим уравнением (2) Коэффициент множественной регрессии составляет КММР = 0,999. В табл. 2 представлены значения энергии водородных связей в различных растворителях, полученные по ур. (1) и (2), в сравнении с литературными данными. Таблица 2 Величины энергии водородных связей...

По их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы. Электролитическая диссоциация. ...

электронов при этом антипараллельны:ывающую МО. Спина мума энергии, принципом Паули и правилом Хунда. Так, два электрона молекСтруктурным элементом, оказывающим значительное влияние на свойства многих веществ, является водородная связь. При определённых условиях атом водорода может быть связан довольно прочно с двумя другими атомами. Имея лишь одну стабильную орбиталь, атом водорода способен образовывать только одну ковалентную связь. Если эта связь полярна, она может, однако, резонировать между двумя положениями. Наибольшее значение имеют те водородные связи, которые образуются между двумя сильно электроотрицательными атомами, в особенности между атомами азота, кислорода и фтора.

Механизм образования водородной связи – донорно-акцепторный. Донор – молекула или ион, имеющий неподеленную пару электронов. Акцептор – протон (Н +).

В некоторых соединениях, таких, как ион FHF - , атом водорода находится приблизительно посредине между двумя электроотрицательными атомами, образуя половину связи с каждым из них. Большинство же водородных связей несимметричны, одно межатомное расстояние больше другого на 50-80 пм, что соответствует отношению прочностей связи, равному приблизительно 10. Энергия более слабой связи обычно составляет около 20-100 кдж×моль -1 , что и называется энергией водородной связи.

Водородные связи, образуемые молекулами воды, обусловливают удивительно высокие точки плавления льда и кипения воды, существование максимума плотности воды, расширение воды при замерзании. Многие особые свойства неорганических и органических молекул, например димеризация жирных кислот, объясняются образованием водородных связей. Водородная связь - особенно важная структурная особенность белков и нуклеиновых кислот.
Водородная связь обычно схематично изображается точками.
Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль –1 . Водородная связь примерно в 15 – 20 раз слабее ковалентной. Водородные связи могут быть внутри- и межмолекулярными.

H - O....H - O Образование межмолекулярной водородной

| | связи между молекулами воды.

Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H 2 O, H 2 F 2 , NH 3 . Так, фтористоводородная кислота (HF) является слабой кислотой в отличие от других галогенводородных кислот за счет водородной связи она димеризуется (H 2 F 2) и может образовать кислые соли (NaHF 2). За счет водородных связей вода характеризуется столь высокими по сравнению с водородными соединениями других элементов (электронных аналогов) главной подгруппы шестой группы температурами плавления и кипения:



соединение Н 2 Te Н 2 Se H 2 S Н 2 О
T кип. 0 С -2 -42 -60

Если бы водородные связи отсутствовали, то вода плавилась бы при –100 °С, а кипела при –80 °С.
Взаимодействие между молекулами воды оказывается достаточно сильным, таким, что даже в парах воды присутствуют димеры и тримеры состава (H 2 O) 2 , (Н 2 O) 3 и т. д.

Таким образом, водородные связи могут образовываться, если есть полярная Х-Н связь и свободная пара электронов. Например, молекулы органических соединений, содержащие группы -ОН, -СООН, -CONH 2 , -NH 2 и др., часто ассоциированы вследствие! образования водородных связей.

Водородные связи могут возникать как между различными молекулами, так и внутри молекулы, если в этой молекуле имеются группы с донорной и акцепторной способностями. Например, именно внутримолекулярные водородные связи играют основную роль в образовании пептидных цепей, которые определяют строение белков. По-видимому, наиболее важным и, несомненно, одним из наиболее известных примеров влияния внутримолекулярной водородной связи на структуру является дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК свернута в виде двойной спирали. Две нити этой двойной спирали связаны друг с другом водородными связями.


Силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса). Ориентационное, индукционное и дисперсионное взаимодействие.

Кроме химической связи, специфической водородной существует ван-дер-ваальсова (межмолекулярная) связь – наиболее универсальный вид межмолекулярной связи.

Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.

Силы Ван-дер-Ваальса включают все виды межмолекулярного притяжения и отталкивания. Они получили название в честь Я.Д. Ван-дер-Ваальса, который первым принял во внимание межмолекулярные взаимодействия для объяснения свойств реальных газов и жидкостей. Эти силы определяют отличие реальных газов от идеальных, существование жидкостей и молекулярных кристаллов. От них зависят многие структурные, спектральные и другие свойства веществ.

Основу ван-дер-ваальсовых сил составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. На определенном расстоянии между молекулами силы притяжения и отталкивания уравновешивают друг друга, и образуется устойчивая система. Ван-дер-ваальсовы силы заметно уступают химическому связыванию. Например, силы, удерживающие атомы хлора в молекуле хлора почти в десять раз больше, чем силы, связывающие молекулы C l2 между собой. Но без этого слабого межмолекулярного притяжения нельзя получить жидкий и твердый хлор. Энергия ван-дер-ваальсовой связи меньше водородной и составляет 2–20 кДж∙моль –1 .

Различают три типа межмолекулярного взаимoдействия: ориентационное, индукционное и дисперсионное.

Ориентационное взаимодействие: Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, т.е. молекулы, дипольный момент которых отличен от нуля, например HCl, H 2 O, NH 3 , ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. Это диполь-дипольное взаимодействие постоянных диполей. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).

Индукционное взаимодействие: Если полярная молекула окажется рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости γ. Постоянный диполь может индуцировать дипольное распределение зарядов в неполярной молекуле. Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного. Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы. Таким образом, индукционное взаимодействие осуществляется между молекулами с постоянным диполем и с молекулами, у которых постоянный дипольный момент равен нулю, но возникает индуцированный диполь под действием полярной молекулы. Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.

Дисперсионное взаимодействие: Между неполярными молекулами также может возникнуть притяжение. Электроны, которые находятся в постоянном движении, на миг могут оказаться окажется сосредоточенными с одной стороны молекулы, то есть неполярная частица станет полярной. Это вызывает перераспределение зарядов в соседних молекулах, и между ними устанавливаются кратковременные связи. силы притяжения между неполярными частицами (атомами, молекулами) являются весьма короткодействующими. Значения энергии такого притяжения зависят размеров частиц и числа электронов в наведенных диполях. Эти связи очень слабые - самые слабые из всех межмолекулярных взаимодействий. Однако они являются наиболее универсальными, так как возникают между любыми молекулами. Таким образом, дисперсионное взаимодействие наблюдается между всеми молекулами, в том числе между молекулами, дипольный момент которых равен нулю. Обусловлено это флуктуацией электронной плотности в молекуле и образованием коротко живущих диполей (время жизни – 10 -8 сек). Взаимодействие между этими диполями определяет величину дисперсионного взаимодействия. Способность к смещению электронной плотности (поляризуемость) увеличивается у атомов и молекул, в которых эти атомы включены, тем выше, чем больше радиус атомов. Таким образом, дисперсионное взаимодействие соединений одной подгруппы возрастает сверху вниз. Например, в ряду неполярных молекул F 2 , Cl 2 , Br 2 , I 2 наблюдается рост температур кипения и плавления.

Существуют, однако, такие молекулы у которых нет не только дипольного электрического момента, но и электрических моментов более высокого порядка; это - сферически симметричные молекулы , прежде всего молекулы идеальных газов. Однако и благородные газы при охлаждении сжижаются, а при дальнейшем охлаждении образуют (гелий - только под повышенным по сравнению с атмосферным давлением) атомные и кристаллы. Поскольку силы между атомами и молекулами в этих решетках относятся к типу слабых ван-дер-ваальсовых, такие вещества плавятся при довольно низких температурах. Большая часть веществ, которые при комнатной температуре находятся в жидком и газообразном состоянии, при низких температурах образуют молекулярные кристаллы (например, метан). Энергия дисперсионного взаимодействия, так же как ориентационного и индукционного взаимодействий, пары частиц обратно пропорциональна шестой степени расстояния между ними. Если бы молекулы только притягивались друг к другу, это привело бы к их слиянию. Но на очень малых расстояниях их электронные оболочки начинают отталкиваться, причем, энергия отталкивания обратно пропорциональна двенадцатой степени расстояния между ними. На малых расстояниях силы отталкивания значительно больше сил притяжения.

Одной молекулы и атомами водорода другой, типа Н-Х (Х - это F, O, N, Cl, Br, I) за счет сил электростатического притяжения.

Связь между водородом и одним из этих атомов характеризуется достаточной полярностью, поскольку связующее электронное облако смещено в сторону более электроотрицательного атома. Водород в данном случае расположен на положительном конце диполя. Два и более таких диполя взаимодействуют между собой так, что ядро атома водорода одной молекулы (положительный конец диполя) притягивается неподеленной электронной парой второй молекулы. Данная связь проявляется в газах, жидкостях и твердых телах.

Она относительно прочна. Наличие водородной связи обусловливает повышение устойчивости молекул вещества, а также повышению их температуры кипения и плавления. Образование водородных связей играет важную роль как в химических, так и в биологических системах.

Водородная связь бывает внутри- и межмолекулярной (рис. 14), молекулы карбоновых кислот в неполярных растворителях димеризуются за счет двух межмолекулярных водородных связей.

а б

Рис. 14. Образование водородной связи: а - внутримолекулярной; б - межмолекулярной.

Существование веществ в различных агрегатных состояниях свидетельствует о том, что между частицами (атомы, ионы, молекулы) имеет место взаимодействие, обусловленное ван-дер-ваальсовыми силами притяжения. Наиболее важной и отличительной чертой этих сил является их универсальность, так как они действуют без исключения между всеми атомами и молекулами.

Водородные связи влияют на физические (т.кип. и т.пл., летучесть, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений.

Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества. Например, этиловый спирт C 2 H 5 OH, способный к ассоциации, кипит при +78,3°С, а диметиловый эфир СН 3 ОСН 3 , не образующий водородных связей, лишь при 24°С (молекулярная формула обоих веществ С 2 Н 6 О).

Образование Н-связей с молекулами растворителя способствует улучшению растворимости. Так, метиловый и этиловый спирты (CH 3 OH, С 2 Н 5 ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.

Внутримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства. Например, Н-связь внутри молекул салициловой кислоты повышает ее кислотность.


Водородные связи и их влияние на свойства вещества

Также в настоящее время есть мнение, что водородная химическая связь бывает слабой и сильной.

Они отличаются друг от друга по энергии и длине связи (расстояние между атомами):

1. Водородные связи слабые. Энергия - 10-30 кДж/моль, длина связи - 30. Все вещества, перечисленные выше, являются примерами нормальной или слабой водородной связи.

2. Водородные связи сильные. Энергия - 400 кДж/моль, длина - 23-24.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: