Теорема ферма смысл. «Доказана ли Великая теорема Ферма? Джон Уайлс доказал великую Теорему Ферма

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

Пьер Ферма, читая «Арифметику» Диофанта Александрийского и размышляя над её задачами, имел привычку записывать на полях книги результаты своих размышлений в виде кратких замечаний. Против восьмой задачи Диофанта на полях книги, Ферма записал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки » /Э.Т.Белл «Творцы математики». М.,1979, стр.69 /. Предлагаю Вашему вниманию элементарное доказательство теоремы ферма, которое может понять любой старшеклассник, увлекающийся математикой.

Сравним комментарий Ферма к задаче Диофанта с современной формулировкой великой теоремы Ферма, имеющей вид уравнения.
«Уравнение

x n + y n = z n (где n – целое число большее двух)

не имеет решений в целых положительных числах »

Комментарий находится с задачей в логической связи, аналогичной логической связи сказуемого с подлежащим. То, что утверждается задачей Диофанта, наоборот утверждается комментарием Ферма.

Комментарий Ферма можно так трактовать: если квадратное уравнение с тремя неизвестными имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение с тремя неизвестными в степени, большей квадрата

В уравнении нет даже намека на его связь с задачей Диофанта. Его утверждение требует доказательства, но при нём нет условия, из которого следует, что оно не имеет решений в целых положительных числах.

Известные мне варианты доказательства уравнения сводятся к следующему алгоритму.

  1. Уравнение теоремы Ферма принимается за её заключение, в справедливости которого убеждаются при помощи доказательства.
  2. Это же уравнение называют исходным уравнением, из которого должно исходить его доказательство.

В результате образовалась тавтология: «Если уравнение не имеет решений в целых положительных числах, то оно не имеет решений в целых положительных числах ».Доказательство тавтологии заведомо является неправильным и лишенным всякого смысла. Но её доказывают методом от противного.

  • Принимается предположение, противоположное тому, что утверждается уравнением, которое требуется доказать. Оно не должно противоречить исходному уравнению, а оно ему противоречит. Доказывать то, что принято без доказательства, и принимать без доказательства то, что требуется доказать, не имеет смысла.
  • На основании принятого предположения выполняются абсолютно правильные математические операции и действия, чтобы доказать, что оно противоречит исходному уравнению и является ложным.

Поэтому вот уже 370 лет доказательство уравнения великой теоремы Ферма остаётся неосуществимой мечтой специалистов и любителей математики.

Я принял уравнение за заключение теоремы, а восьмую задачу Диофанта и её уравнение — за условие теоремы.


«Если уравнение x 2 + y 2 = z 2 (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение x n + y n = z n , где n > 2 (2) не имеет решений на множестве целых положительных чисел.»

Доказательство.

А) Всем известно, что уравнение (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел. Докажем, что ни одна тройка пифагоровых чисел, являющаяся решением уравнения (1), не является решением уравнения (2).

На основании закона обратимости равенства, стороны уравнения (1) поменяем местами. Пифагоровы числа (z, х, у ) могут быть истолкованы как длины сторон прямоугольного треугольника, а квадраты ( x 2 , y 2 , z 2 ) могут быть истолкованы как площади квадратов, построенных на его гипотенузе и катетах.

Площади квадратов уравнения (1) умножим на произвольную высоту h :

z 2 h = x 2 h + y 2 h (3)

Уравнение (3) можно трактовать как равенство объема параллелепипеда сумме объёмов двух параллелепипедов.

Пусть высота трех параллелепипедов h = z :

z 3 = x 2 z + y 2 z (4)

Объем куба разложился на два объема двух параллелепипедов. Объём куба оставим без изменений, а высоту первого параллелепипед уменьшим до x и высоту второго параллелепипеда уменьшим до y . Объём куба больше суммы объёмов двух кубов:

z 3 > x 3 + y 3 (5)

На множестве троек пифагоровых чисел (х, у, z ) при n = 3 не может быть ни одного решения уравнения (2). Следовательно, на множестве всех троек пифагоровых чисел невозможно куб разложить на два куба.

Пусть в уравнении (3) высота трёх параллелепипедов h = z 2 :

z 2 z 2 = x 2 z 2 + y 2 z 2 (6)

Объем параллелепипеда разложился на сумму объёмов двух параллелепипедов.
Левую сторону уравнения (6) оставим без изменения. На правой его стороне высоту z 2 уменьшим до х в первом слагаемом и до у 2 во втором слагаемом.

Уравнение (6) обратилось в неравенство:

Объем параллелепипеда разложился на два объема двух параллелепипедов.

Левую сторону уравнения (8) оставим без изменения.
На правой стороне высоту z n-2 уменьшим до x n-2 в первом слагаемом и уменьшим до y n-2 во втором слагаемом. Уравнение (8) обращается в неравенство:

z n > x n + y n (9)

На множестве троек пифагоровых чисел не может быть ни одного решения уравнения (2).

Следовательно, на множестве всех троек пифагоровых чисел при всех n > 2 уравнение (2) не имеет решений.

Получено «постине чудесное доказательство», но только для троек пифагоровых чисел . В этом заключается недостаток доказательства и причина отказа П. Ферма от него.

B) Докажем, что уравнение (2) не имеет решений на множестве троек непифагоровых чисел, представляющем сбой семейство произвольно взятой тройки пифагоровых чисел z = 13, x = 12, y = 5 и семейство произвольно взятой тройки целых положительных чисел z = 21, x = 19, y = 16

Обе тройки чисел являются членами своих семейств:

(13, 12, 12); (13, 12,11);…; (13, 12, 5) ;…; (13,7, 1);…; (13,1, 1) (10)
(21, 20, 20); (21, 20, 19);…;(21, 19, 16);…;(21, 1, 1) (11)

Число членов семейства (10) и (11) равно половине произведения 13 на 12 и 21 на 20, т. е. 78 и 210.

В каждом члене семейства (10) присутствует z = 13 и переменные х и у 13 > x > 0 , 13 > y > 0 1

В каждом члене семейства (11) присутствует z = 21 и переменные х и у , которые принимают значения целых чисел 21 > x >0 , 21 > y > 0 . Переменные последовательно убывают на 1 .

Тройки чисел последовательности (10) и (11) можно представить в виде последовательности неравенств третьей степени:

13 3 < 12 3 + 12 3 ;13 3 < 12 3 + 11 3 ;…; 13 3 < 12 3 + 8 3 ; 13 3 > 12 3 + 7 3 ;…; 13 3 > 1 3 + 1 3
21 3 < 20 3 + 20 3 ; 21 3 < 20 3 + 19 3 ; …; 21 3 < 19 3 + 14 3 ; 21 3 > 19 3 + 13 3 ;…; 21 3 > 1 3 + 1 3

и в виде неравенств четвертой степени:

13 4 < 12 4 + 12 4 ;…; 13 4 < 12 4 + 10 4 ; 13 4 > 12 4 + 9 4 ;…; 13 4 > 1 4 + 1 4
21 4 < 20 4 + 20 4 ; 21 4 < 20 4 + 19 4 ; …; 21 4 < 19 4 + 16 4 ;…; 21 4 > 1 4 + 1 4

Правильность каждого неравенства удостоверяется возвышением чисел в третью и в четвертую степень.

Куб большего числа невозможно разложить на два куба меньших чисел. Он или меньше, или больше, суммы кубов двух меньших чисел.

Биквадрат большего числа невозможно разложить на два биквадрата меньших чисел. Он или меньше, или больше, суммы биквадратов меньших чисел.

С возрастанием показателя степени все неравенства, кроме левого крайнего неравенства, имеют одинаковый смысл:

Неравенств они все имеют одинаковый смысл: степень большего числа больше суммы степеней меньших двух чисел с тем же показателем:

13 n > 12 n + 12 n ; 13 n > 12 n + 11 n ;…; 13 n > 7 n + 4 n ;…; 13 n > 1 n + 1 n (12)
21 n > 20 n + 20 n ; 21 n > 20 n + 19 n ;…; ;…; 21 n > 1 n + 1 n (13)

Левый крайний член последовательностей (12) (13) представляет собой наиболее слабое неравенство. Его правильность определяет правильность всех последующих неравенств последовательности (12) при n > 8 и последовательности (13) при n > 14 .

Среди них не может быт ни одного равенства. Произвольно взятая тройка целых положительных чисел (21,19,16) не является решением уравнения (2) великой теоремы Ферма. Если произвольно взятая тройка целых положительных чисел не является решением уравнения, то уравнение не имеет решений на множестве целых положительных чисел, что и требовалось доказать.

С) В комментарии Ферма к задаче Диофанта утверждается, что невозможно разложить «вообще, никакую степень, большую квадрата, на две степени с тем же показателем ».

Целую степень, большую квадрата, действительно невозможно разложить на две степени с тем же показателем. Нецелую степень, большую квадрата можно разложить на две степени с тем же показателем.

Любая произвольно взятая тройка целых положительных чисел (z, x, y) может принадлежать семейству, каждый член которого состоит из постоянного числа z и двух чисел, меньших z . Каждый член семейства может быть представлен в форме неравенства, а все полученные неравенства — в виде последовательности неравенств:

z n < (z — 1) n + (z — 1) n ; z n < (z — 1) n + (z — 2) n ; …; z n > 1 n + 1 n (14)

Последовательность неравенств (14) начинается неравенствами, у которых левая сторона меньше правой стороны, а оканчивается неравенствами, у которых правая сторона меньше левой стороны. С возрастанием показателя степени n > 2 число неравенств правой стороны последовательности (14) увеличивается. При показателе степени n = k все неравенства левой стороны последовательности изменяют свой смысл и принимают смысл неравенств правой стороны неравенств последовательности (14). В результате возрастания показателя степени у всех неравенств левая сторона оказывается больше правой стороны:

z k > (z-1) k + (z-1) k ; z k > (z-1) k + (z-2) k ;…; z k > 2 k + 1 k ; z k > 1 k + 1 k (15)

При дальнейшем возрастании показателя степени n > k ни одно из неравенств не изменяет своего смысла и не обращается в равенство. На этом основании можно утверждать, что любая произвольно взятая тройка целых положительных чисел (z, x, y) при n > 2 , z > x , z > y

В произвольно взятой тройке целых положительных чисел z может быть сколь угодно большим натуральным числом. Для всех натуральных чисел, которые не больше z , большая теорема Ферма доказана.

D) Каким бы ни было большим число z , в натуральном ряду чисел до него имеется большое, но конечное множество целых чисел, а после него – бесконечное множество целых чисел.

Докажем, что все бесконечное множество натуральных чисел, больших z , образуют тройки чисел, которые не являются решениями уравнения большой теоремы Ферма, например, произвольно взятая тройка целых положительных чисел (z + 1, x ,y) , в которой z + 1 > x и z + 1 > y при всех значениях показателя степени n > 2 не является решением уравнения большой теоремы Ферма.

Произвольно взятая тройка целых положительных чисел (z + 1, x, y) может принадлежать семейству троек чисел, каждый член которого состоят из постоянного числа z + 1 и двух чисел х и у , принимающих различные значения, меньшие z + 1 . Члены семейства могут быть представлены в форме неравенств, у которых постоянная левая сторона меньше, или больше, правой стороны. Неравенства можно упорядоченно расположить в виде последовательности неравенств:

При дальнейшем возрастании показателя степени n > k до бесконечности ни одно из неравенств последовательности (17) не изменяет своего смысла и не обращается в равенство. В последовательности (16) неравенство, образованное из произвольно взятой тройки целых положительных чисел (z + 1, x, y) , может находиться в её правой части в виде (z + 1) n > x n + y n или находиться в её левой части в виде (z + 1) n < x n + y n .

В любом случае тройка целых положительных чисел (z + 1, x, y) при n > 2 , z + 1 > x , z + 1 > y в последовательности (16) представляет собой неравенство и не может представлять собой равенства, т. е. не может представлять собой решения уравнения большой теоремы Ферма.

Легко и просто понять происхождение последовательности степенных неравенств (16), в которой последнее неравенство левой стороны и первое неравенство правой стороны являются неравенствами противоположного смысла. Наоборот, нелегко и непросто школьникам, старшекласснику и старшекласснице, понять, каким образом из последовательности неравенств (16) образуется последовательность неравенств (17), в которой все неравенства одинакового смысла.

В последовательности (16) увеличение целой степени неравенств на 1 единицу обращает последнее неравенство левой стороны в первое неравенство противоположного смысла правой стороны. Таким образом, количество неравенств девой стороны последовательности уменьшается, а количество неравенств правой стороны увеличивается. Между последним и первым степенными неравенствами противоположного смысла в обязательном порядке находится степенное равенство. Его степень не может быть целым числом, так как между двумя последовательными натуральными числами находятся только нецелые числа. Степенное равенство нецелой степени, по условию теоремы, не может считаться решением уравнения (1).

Если в последовательности (16) продолжать увеличение степени на 1 единицу, то последнее неравенство её левой стороны обратится в первое неравенство противоположного смысла правой стороны. В результате не останется ни одного неравенства левой стороны и останутся только неравенства правой стороны, которые представят собой последовательность усиливающихся степенных неравенств (17). Дальнейшее увеличение их целой степени на 1 единицу лишь усиливает её степенные неравенства и категорически исключает возможность появления равенства в целой степени.

Следовательно, вообще, никакую целую степень натурального числа (z+1) последовательности степенных неравенств (17) невозможно разложить на две целых степени с тем же показателем. Поэтому уравнение (1) не имеет решений на бесконечном множестве натуральных чисел, что и требовалось доказать.

Следовательно, большая теорема Ферма доказана во всей всеобщности:

  • в разделе А) для всех троек (z, x, y) пифагоровых чисел (открытое Ферма поистине чудесное доказательство),
  • в разделе В) для всех членов семейства любой тройки (z, x, y) пифагоровых чисел,
  • в разделе С) для всех троек чисел (z, x, y) , не больших числа z
  • в разделе D) для всех троек чисел (z, x, y) натурального ряда чисел.

Изменения внесены 05.09.2010 г.

Какие теоремы можно и какие нельзя доказать от противного

В толковом словаре математических терминов дано определение доказательству от противного теоремы, противоположной обратной теореме.

«Доказательство от противного – метод доказательства теоремы (предложения), состоящий в том, что доказывают не саму теорему, а ей равносильную (эквивалентную), противоположную обратной (обратную противоположной) теорему. Доказательство от противного используют всякий раз, когда прямую теорему доказать трудно, а противоположную обратной легче. При доказательстве от противного заключение теоремы заменяется её отрицанием, и путём рассуждения приходят к отрицанию условия, т.е. к противоречию, к противному (противоположному тому, что дано; это приведение к абсурду и доказывает теорему».

Доказательство от противного очень часто применяется в математике. Доказательство от противного основано на законе исключённого третьего, заключающегося в том, что из двух высказываний (утверждений) А и А (отрицание А) одно из них истинно, а другое ложно». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.112/.

Не лучше было бы открыто заявить о том, что метод доказательства от противного не является математическим методом, хотя и используется в математике, что он является логическим методом и принадлежит логике. Допустимо ли утверждать, что доказательство от противного «используют всякий раз, когда прямую теорему доказать трудно», когда на самом деле его используют тогда, и только тогда, когда ему нет замены.

Заслуживает особого внимания и характеристика отношения друг к другу прямой и обратной ей теорем. «Обратная теорема для данной теоремы (или к данной теореме) — теорема, в которой условием является заключение, а заключением – условие данной теоремы. Данная теорема по отношению к обратной теореме называется прямой теоремой (исходной). В то же время обратная теорема к обратной теореме будет данной теоремой; поэтому прямая и обратная теоремы называются взаимно обратными. Если прямая (данная) теорема верна, то обратная теорема не всегда верна. Например, если четырёхугольник – ромб, то его диагонали взаимно перпендикулярны (прямая теорема). Если в четырёхугольнике диагонали взаимно перпендикулярны, то четырёхугольник есть ромб – это неверно, т. е. обратная теорема неверна». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.261 /.

Данная характеристика отношения прямой и обратной теорем не учитывает того, что условие прямой теоремы принимается как данное, без доказательства, так что его правильность не имеет гарантии. Условие обратной теоремы не принимается как данное, так как оно является заключением доказанной прямой теоремы. Его правильность засвидетельствована доказательством прямой теоремы. Это существенное логическое различие условий прямой и обратной теорем оказывается решающим в вопросе какие теоремы можно и какие нельзя доказать логическим методом от противного.

Допустим, что на примете имеется прямая теорема, которую доказать обычным математическим методом можно, но трудно. Сформулируем её в общем виде в краткой форме так: из А следует Е . Символ А имеет значение данного условия теоремы, принятого без доказательства. Символ Е имеет значение заключения теоремы, которое требуется доказать.

Доказывать прямую теорему будем от противного, логическим методом. Логическим методом доказывается теорема, которая имеет не математическое условие, а логическое условие. Его можно получить, если математическое условие теоремы из А следует Е , дополнить прямо противоположным условием из А не следует Е .

В результате получилось логическое противоречивое условие новой теоремы, заключающее в себе две части: из А следует Е и из А не следует Е . Полученное условие новой теоремы соответствует логическому закону исключённого третьего и соответствует доказательству теоремы методом от противного.

Согласно закону, одна часть противоречивого условия является ложной, другая его часть является истинной, а третье – исключено. Доказательство от противного имеет совей задачей и целью установить, именно какая часть из двух частей условия теоремы является ложной. Как только будет определена ложная часть условия, так будет установлено, что другая часть является истинной частью, а третье — исключено.

Согласно толковому словарю математических терминов, «доказательство есть рассуждение, в ходе которого устанавливается истинность или ложность какого-либо утверждения (суждения, высказывания, теоремы)» . Доказательство от противного есть рассуждение, в ходе которого устанавливается ложность (абсурдность) заключения, вытекающего из ложного условия доказываемой теоремы.

Дано: из А следует Е и из А не следует Е .

Доказать: из А следует Е .

Доказательство : Логическое условие теоремы заключает в себе противоречие, которое требует своего разрешения. Противоречие условия должно найти своё разрешение в доказательстве и его результате. Результат оказывается ложным при безупречном и безошибочном рассуждении. Причиной ложного заключения при логически правильном рассуждении может быть только противоречивое условие: из А следует Е и из А не следует Е .

Нет и тени сомнения в том, что одна часть условия является ложной, а другая в этом случае является истинной. Обе части условия имеют одинаковое происхождение, приняты как данные, предположенные, одинаково возможные, одинаково допустимые и т. д. В ходе логического рассуждения не обнаружено ни одного логического признака, который отличал бы одну часть условия от другой. Поэтому в одной и той же мере может быть из А следует Е и может быть из А не следует Е . Утверждение из А следует Е может быть ложным , тогда утверждение из А не следует Е будет истинным. Утверждение из А не следует Е может быть ложным, тогда утверждение из А следует Е будет истинным.

Следовательно, прямую теорему методом от противного доказать невозможно.

Теперь эту же прямую теорему докажем обычным математическим методом.

Дано: А .

Доказать: из А следует Е .

Доказательство.

1. Из А следует Б

2. Из Б следует В (по ранее доказанной теореме)).

3. Из В следует Г (по ранее доказанной теореме).

4. Из Г следует Д (по ранее доказанной теореме).

5. Из Д следует Е (по ранее доказанной теореме).

На основании закона транзитивности, из А следует Е . Прямая теорема доказана обычным методом.

Пусть доказанная прямая теорема имеет правильную обратную теорему: из Е следует А .

Докажем её обычным математическим методом. Доказательство обратной теоремы можно выразить в символической форме в виде алгоритма математических операций.

Дано: Е

Доказать: из Е следует А .

Доказательство.

1. Из Е следует Д

2. Из Д следует Г (по ранее доказанной обратной теореме).

3. Из Г следует В (по ранее доказанной обратной теореме).

4. Из В не следует Б (обратная теорема неверна). Поэтому и из Б не следует А .

В данной ситуации продолжать математическое доказательство обратной теоремы не имеет смысла. Причина возникновения ситуации – логическая. Неверную обратную теорему ничем заменить невозможно. Следовательно, данную обратную теорему доказать обычным математическим методом невозможно. Вся надежда – на доказательство данной обратной теоремы методом от противного.

Чтобы её доказать методом от противного, требуется заменить её математическое условие логическим противоречивым условием, заключающим в себе по смыслу две части – ложную и истинную.

Обратная теорема утверждает: из Е не следует А . Её условие Е , из которое следует заключение А , является результатом доказательства прямой теоремы обычным математическим методом. Это условие необходимо сохранить и дополнить утверждением из Е следует А . В результате дополнения получается противоречивое условие новой обратной теоремы: из Е следует А и из Е не следует А . Исходя из этого логически противоречивого условия, обратную теорему можно доказать посредством правильного логического рассуждения только, и только, логическим методом от противного. В доказательстве от противного любые математические действия и операции подчинены логическим и поэтому в счёт не идут.

В первой части противоречивого утверждения из Е следует А условие Е было доказано доказательством прямой теоремы. Во второй его части из Е не следует А условие Е было предположено и принято без доказательства. Какое-то из них одно является ложным, а другое – истинным. Требуется доказать, какое из них является ложным.

Доказываем посредством правильного логического рассуждения и обнаруживаем, что его результатом является ложное, абсурдное заключение. Причиной ложного логического заключения является противоречивое логическое условие теоремы, заключающее в себе две части – ложную и истинную. Ложной частью может быть только утверждение из Е не следует А , в котором Е было принято без доказательства. Именно этим оно отличается от Е утверждения из Е следует А , которое доказано доказательством прямой теоремы.

Следовательно, истинным является утверждение: из Е следует А , что и требовалось доказать.

Вывод : логическим методом от противного доказывается только та обратная теорема, которая имеет доказанную математическим методом прямую теорему и которую математическим методом доказать невозможно.

Полученный вывод приобретает исключительное по важности значение в отношении к методу доказательства от противного великой теоремы Ферма. Подавляющее большинство попыток её доказать имеет в своей основе не обычный математический метод, а логический метод доказательства от противного. Доказательство большой теоремы Ферма Уайлса не является исключением.

Дмитрий Абраров в статье «Теорема Ферма: феномен доказательств Уайлса» опубликовал комментарий к доказательству большой теоремы Ферма Уайлсом. По Абрарову, Уайлс доказывает большую теорему Ферма с помощью замечательной находки немецкого математика Герхарда Фрея (р. 1944), связавшего потенциальное решение уравнения Ферма x n + y n = z n , где n > 2 , с другим, совершенно непохожим на него, уравнением. Это новое уравнение задаётся специальной кривой (названной эллиптической кривой Фрея). Кривая Фрея задаётся уравнением совсем несложного вида:
.

«А именно Фрей сопоставил всякому решению (a, b, c) уравнение Ферма, то есть числам, удовлетворяющим соотношению a n + b n = c n , указанную выше кривую. В этом случае отсюда следовала бы великая теорема Ферма». (Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса»)

Другими словами, Герхард Фрей предположил, что уравнение большой теоремы Ферма x n + y n = z n , где n > 2 , имеет решения в целых положительных числах. Этими же решения являются, по предположению Фрея, решениями его уравнения
y 2 + x (x — a n) (y + b n) = 0 , которое задаётся его эллиптической кривой.

Эндрю Уайлс принял эту замечательную находку Фрея и с её помощью посредством математического метода доказал, что этой находки, то есть эллиптической кривой Фрея, не существует. Поэтому не существует уравнения и его решений, которые задаются несуществующей эллиптической кривой, Поэтому Уайлсу следовало бы принять вывод о том, что не существует уравнения большой теоремы Ферма и самой теоремы Ферма. Однако им принимается более скромное заключение том, что уравнение большой теоремы Ферма не имеет решений в целых положительных числах.

Неопровержимым фактом может являться то, что Уайлсом принято предположение, прямо противоположное по смыслу тому, что утверждается большой теоремой Ферма. Оно обязывает Уайлса доказывать большую теорему Ферма методом от противного. Последуем и мы его примеру и посмотрим, что из этого примера получается.

В большой теореме Ферма утверждается, что уравнение, x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

Согласно логическому методу доказательства от противного, это утверждение сохраняется, принимается как данное без доказательства, и затем дополняется противоположным по смыслу утверждением: уравнение x n + y n = z n , где n > 2 , имеет решения в целых положительных числах.

Предположенное утверждение так же принимается как данное, без доказательства. Оба утверждения, рассматриваемые с точки зрения основных законов логики, являются одинаково допустимыми, равноправными и одинаково возможными. Посредством правильного рассуждения требуется установить, именно какое из них является ложным, чтобы затем установить, что другое утверждение является истинным.

Правильное рассуждение завершается ложным, абсурдным заключением, логической причиной которого может быть только противоречивое условие доказываемой теоремы, заключающее в себе две части прямо противоположного смысла. Они и явились логической причиной абсурдного заключения, результата доказательства от противного.

Однако в ходе логически правильного рассуждения не было обнаружено ни одного признака, по которому можно было бы установить, какое именно утверждение является ложным. Им может быть утверждение: уравнение x n + y n = z n , где n > 2 , имеет решений в целых положительных числах. На этом же основании им может быть утверждение: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

В итоге рассуждения вывод может быть только один: большую теорему Ферма методом от противного доказать невозможно .

Было бы совсем другое дело, если бы большая теорема Ферма была обратной теоремой, которая имеет прямую теорему, доказанную обычным математическим методом. В этом случае её можно было доказать от противного. А так как она является прямой теоремой, то её доказательство должно иметь в своей основе не логический метод доказательства от противного, а обычный математический метод.

По словам Д. Абрарова, самый известный из современных российских математиков академик В. И. Арнольд на доказательство Уайлса отреагировал «активно скептически». Академик заявил: «это не настоящая математика – настоящая математика геометрична и сильна связями с физикой».(Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса». Заявление академика выражает самую сущность нематематического доказательства Уайлса большой теоремы Ферма.

Методом от противного невозможно доказать ни того, что уравнение большой теоремы Ферма не имеет решений, ни того, что оно имеет решения. Ошибка Уайлса не математическая, а логическая — использование доказательства от противного там, где его использование не имеет смысла и большой теоремы Ферма не доказывает.

Не доказывается большая теорема Ферма и с помощью обычного математического метода, если в ней дано: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах, и если в ней требуется доказать: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах. В такой форме имеется не теорема, а тавтология, лишённая смысла.

Примечание. Моё доказательство БТФ обсуждалось на одном из форумов. Один из участников Trotil, специалист в теории чисел, сделал следующее авторитетное заявление под названием: «Краткий пересказ того, что сделал Миргородский». Привожу его дословно:

«А. Он доказал, что если z 2 = x 2 + y , то z n > x n + y n . Это хорошо известный и вполне очевидный факт.

В. Он взял две тройки — пифагорову и не пифагорову и показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него).

С. А затем автором опущен тот факт, что из < в последующей степени может оказаться = , а не только > . Простой контрпример — переход n = 1 в n = 2 в пифагоровой тройке.

D. Этот пункт ничего существенного в доказательство БТФ не вносит. Вывод: БТФ не доказана».

Рассмотрю его заключение по пунктам.

А. В нём доказана БТФ для всего бесконечного множества троек пифагоровых чисел. Доказана геометрическим методом, который, как я полагаю, мной не открыт, а переоткрыт. А открыт он был, как я полагаю, самим П. Ферма. Именно его мог иметь в виду Ферма, когда писал:

«Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Данное моё предположение основано на том, что в задаче Диофанта, против которой, на полях книги, писал Ферма, речь идёт о решениях диофантова уравнения, которыми являются тройки пифагоровых чисел.

Бесконечное множество троек пифагоровых чисел является решениями диофатова уравнения, а в теореме Ферма, наоборот, ни одно из решений не может быть решением уравнения теоремы Ферма. И к этому факту поистине чудесное доказательство Ферма имеет непосредственное отношение. Позже Ферма мог распространить свою теорему на множество всех натуральных чисел. На множестве всех натуральных чисел БТФ не относится к «множеству исключительно красивых теорем». Это — моё предположение, которое ни доказать, ни опровергнуть невозможно. Его можно и принимать и отвергать.

В. В данном пункте мной доказывается, что как семейство произвольно взятой пифагоровой тройки чисел, так и семейство произвольно взятой не пифагоровой тройки чисел БТФ выполняется, Это — необходимое, но недостаточное и промежуточное звено в моём доказательстве БТФ. Взятые мной примеры семейства тройки пифагоровых чисел и семейства тройки не пифагоровых чисел имеют значение конкретных примеров, предполагающих и не исключающих существование аналогичных других примеров.

Утверждение Trotil, что я «показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него) лишено основания. Он не может опровергнуть того факта, что я с таким же успехом могу взять другие примеры пифагоровой и не пифагоровой тройки для получения конкретного определённого семейства одной и другой тройки.

Какую пару троек я ни взял бы, проверка их пригодности для решения задачи может быть осуществлена, на мой взгляд, только методом «простого перебора». Какой-то другой метод мне не известен и не требуется. Если он пришёлся не по вкусу Trotil, то ему следовало бы предложить другой метод, чего он не делает. Не предлагая ничего взамен, осуждать «простой перебор», который в данном случае незаменим, некорректно.

С. Мною опущено = между < и < на основании того, что в доказательстве БТФ рассматривается уравнение z 2 = x 2 + y (1), в котором степень n > 2 целое положительное число. Из равенства, находящегося между неравенствами следует обязательное рассмотрение уравнения (1) при нецелом значении степени n > 2 . Trotil, считая обязательным рассмотрение равенства между неравенствами, фактически считает необходимым в доказательстве БТФ рассмотрение уравнения (1) при нецелом значении степени n > 2 . Я это сделал для себя и обнаружил, что уравнение (1) при нецелом значении степени n > 2 имеет решением тройку чисел: z, (z-1), (z-1) при нецелом показателе степени.

ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."

"Ферма и его теорема", Амадео Модильяни, 1920

Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."

Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).

В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!

Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!

Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."

На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.

Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.

Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.

Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".

Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.

Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.

Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.

Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.

Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).

Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).

Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.

Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".

Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.

Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.

Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.

Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.

Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.

Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в своё оправдание - что, мол, вот почему мы отмалчивались, сами не доросли ещё до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в её конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма - это уравнение Пифагора X 2 + Y 2 = Z 2 , связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник - со сторонами (3, 4, 5) . Но нетрудно найти и другие варианты: например (5, 12, 13) , (7, 24, 25) или (8, 15, 17) . Во всех этих случаях длина гипотенузы имеет вид (А 2 + В 2) , где А и В - взаимно простые числа разной чётности. При этом длины катетов равны (А 2 - В 2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A 2 - B 2 , Y = 2AB , Z = A 2 + B 2) является решением уравнения X 2 + Y 2 = Z 2 и задаёт прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчёркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий - до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нём, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царём в геометрии и даже за её пределами - будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звёзды, с Землёю в центре, наконец, первая республика учёных в италийском городе Кротоне - таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант - скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант ещё не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провёл немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звёзд, отрезков или многогранников. Главное занятие учёных в этом мире - решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X 3 + Y 3 = Z 3 ?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешённых задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему - молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков - вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чём не фантазировал на рубеже XVI - XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазёр Декарт не любил длинных расчётов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях - и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X 3 + Y 3 = Z 3 , выглядит сложнее, её геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведённая на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезённого в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трёх чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчёт больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X 4 + Y 4 = Z 4 можно построить меньшее его решение. Значит, сумма четвёртых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчёт суммы двух кубов?

Вдохновлённый успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 - и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своём открытии. Но ответа он не получил - хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чём тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы - для этого потребовался математический анализ. Значит, его и надо развивать - вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остаётся полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоценёнными. Он не был этим огорчён: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план ещё на сто лет - пока её не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π 2 /6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа π?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень - 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители - дело тонкое. Даже Эйлер не разобрался в нём до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд - учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: всё, чего коснулись его руки и разум, не будет забыто новой учёной молодёжью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 - и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый учёный ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог всё, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры - и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не даётся даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввёл три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввёл три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось ещё подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчётов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых - из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить - хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) - француз Эварист Галуа. И лишь много позже смерти Гаусса - в 1872 году - юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий - тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился ещё при жизни Гаусса. Сам он пренебрёг теоремой Ферма из принципа: не царское это дело - решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооружённые его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порождённых корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) - так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен ещё Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее её природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей всё новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но её соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры - Пуанкаре и Гильберт - демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трёх важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намёк был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями - значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путём действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А ещё на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = AX 3 + BX 2 + CX и потому пересекаются с любой прямой в трёх точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение - превратить её в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодёжь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это - векторное пространство определённой размерности) с геометрическим родом той комплексной кривой, которая задаётся этим уравнением. Морделл пришёл к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив - в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел - и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году - в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трёхмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трёхмерном или многомерном случае такого ответа нет - нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп - коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырёх поколений математиков - от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет - благодаря большому числу её участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почётных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодёжи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчёт эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Всё, что Вейль мог ответить молодому японцу, - это что если ему очень повезёт по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришёл к убеждению, что каждая эллиптическая кривая порождается модулярными функциями - точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже - в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как её доказать или где её проверить, и оттого её долгое время никто не принимал всерьёз. Первый отклик пришёл лишь через тридцать лет - почти как в эпоху Ферма!

Лёд тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия - и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покорённых математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился ещё один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего чёткого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан - в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитёрам. Недаром там свил своё гнездо Барри Мазур - разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик - Кен Рибет, равно искушённый в тонкостях топологии и алгебры, но ещё ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же всё сделано! Вот здесь нужно применить преобразование Ф, тут - воспользоваться леммами В и К, и всё примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им - вместе с покойным Танияма - следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили своё утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует всё, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма - иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путём. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матёрых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех - Эндрю Уайлз из Кембриджа - ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует своё доказательство? Ох, беда…

Всё же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надёжных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышлёным студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента - иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа - лучше даже не в Англии, а в Америке… Что может быть лучше далёкого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нём ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведёт их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвящённая «теории Ивасава» - популярному разделу теории чисел. Уайлз решил рассказать на ней своё доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шёл долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, всё чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нём ещё одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» - но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и чёткой задаче - без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе - и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать своё поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать своё доказательство - с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был всё-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую - благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлёкся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог - да и ни к чему это стало. Он провёл необходимое рассуждение в рамках теории Ивасава, и всё получилось за полчаса! Так - с опозданием в один год - была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трёхсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдёт в учебники теории чисел.

Подводя итог трёхвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами - длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате - вроде достижения Северного полюса Земли или полёта на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения - ещё в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта - хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули - и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий учёного Базарова и не решился их воспеть, но это вскоре сделали учёный Иван Сеченов и просвещённый журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание - сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции - и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полёт Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Ещё раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? - ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоумённый вопрос: «А зачем это нужно?» - последовал чёткий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придётся развить для решения такой проблемы - и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог её не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача - возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли чётное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами π и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Ещё в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения - хотя бы потому, что арсенал математических средств физики неуклонно растёт, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времён Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорождённая) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики - той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилёва)? Это мы вряд ли скоро поймём. Но поклонение учёных новому кумиру уже стало массовым явлением. Вероятно, здесь развернётся эпопея, сравнимая с трёхвековой биографией теоремы Ферма. Так на стыках разных наук рождаются всё новые кумиры - подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых - в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира - и он сумел оставить на новорождённом отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов
«Знание-сила»

ИСТОРИЯ ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Грандиозное событие

Как-то в новогоднем выпуске рассылки о том, как произносить тосты, я вскользь упомянул, что в конце ХХ века произошло одно грандиозное событие, которого многие не заметили - была, наконец-то доказана так называемая Великая теорема Ферма. По этому поводу среди полученных писем я обнаружил два отклика от девушек (одна из них, насколько помню - девятиклассница Вика из Зеленограда), которых удивил данный факт.

А меня удивило то, насколько живо девочки интересуются проблемами современной математики. Поэтому, думаю, что не только девочкам, но и мальчикам всех возрастов - от старшеклассников до пенсионеров, тоже будет интересно узнать историю Великой теоремы.

Доказательство теоремы Ферма - великое событие. А т.к. со словом "великий" не принято шутить, то знать историю теоремы, мне кажется, каждый уважающий себя оратор (а все мы, когда говорим - ораторы) просто обязан.

Если так получилось, что вы не любите математику так, как люблю ее я, то некоторые углубления в детали просматривайте беглым взором. Понимая, что не всем читателям нашей рассылки интересно блуждать в математических дебрях, я постарался не приводить никаких формул (кроме самого уравнения теоремы Ферма и пары гипотез) и максимально упростить освещение некоторых специфических вопросов.

Как Ферма заварил кашу

Французский юрист и по совместительству великий математик XVII века Пьер Ферма (1601-1665) выдвинул одно любопытное утверждение из области теории чисел, которое впоследствии получило название Великой (или Большой) теоремы Ферма. Это одна из самых известных и феноменальных математических теорем. Наверно, ажиотаж вокруг нее был бы не так силен, если бы в книге Диофанта Александрийского (III век н. э.) "Арифметика", которую Ферма частенько штудировал, делая пометки на ее широких полях, и которую любезно сохранил для потомков его сын Сэмюэл, не была обнаружена примерно следующая запись великого математика:

"Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях".

Она-то, эта запись, и явилась причиной последующей грандиозной суматохи вокруг теоремы.

Итак, знаменитый ученый заявил, что доказал свою теорему. Давайте же зададимся вопросом: действительно ли он ее доказал или банально соврал? Или есть другие версии, объясняющие появление той записи на полях, не дававшей спокойно спать многим математикам следующих поколений?

История Великой теоремы увлекательна, как приключение во времени. В 1636 году Ферма заявил, что уравнение вида x n +y n =z n не имеет решений в целых числах при показателе степени n>2. Это собственно и есть Большая теорема Ферма. В этой, казалось бы, простой с виду математической формуле Вселенная замаскировала невероятную сложность. Американский математик шотландского происхождения Эрик Темпл Белл в своей книге "Последняя проблема" (1961) даже предположил, что, возможно, человечество прекратит свое существование раньше, чем сможет доказать Великую теорему Ферма.

Несколько странным является то, что почему-то теорема опоздала с появлением на свет, поскольку ситуация назрела давно, ведь ее частный случай при n=2 - другая знаменитая математическая формула - теорема Пифагора, возникла на двадцать два столетия раньше. В отличие от теоремы Ферма, теорема Пифагора имеет бесконечное множество целочисленных решений, например, такие пифагоровы треугольники: (3,4,5), (5,12,13), (7,24,25), (8,15,17) … (27,36,45) … (112,384,400) … (4232, 7935, 8993) …

Синдром Великой теоремы

Кто только не пытался доказать теорему Ферма. Любой оперившийся студент считал своим долгом приложиться к Великой теореме, но доказать ее всё никак никому не удавалось. Сначала не удавалось сто лет. Потом еще сто. И еще. Среди математиков стал развиваться массовый синдром: "Как же так? Ферма доказал, а я что, не смогу, что ли?" - и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Сколько бы теорему не проверяли - она всегда оказывалась верна. Я знал одного энергичного программиста, который был одержим идеей опровергнуть Великую теорему, пытаясь найти хотя бы одно ее решение (контрпример) методом перебора целых чисел с использованием быстродействующего компьютера (в то время чаще именовавшегося ЭВМ). Он верил в успех своего предприятия и любил приговаривать: "Еще немного - и грянет сенсация!". Думаю, что в разных местах нашей планеты имелось немалое количество такого сорта смелых искателей. Ни одного решения он, конечно же, не нашел. И никакие компьютеры, хоть даже со сказочным быстродействием, никогда не смогли бы проверить теорему, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

Теорема требует доказательства

Математики знают, что если теорема не доказана, из нее может следовать всё что угодно (как истина, так и ложь), как это было с некоторыми другими гипотезами. Например, в одном из своих писем Пьер Ферма высказал предположение, что числа вида 2 n +1 (т.н. числа Ферма) обязательно простые (т.е. не имеют целочисленных делителей и делятся без остатка только на себя и на единицу), если n - степень двойки (1, 2, 4, 8, 16, 32, 64 и т.д.). Эта гипотеза Ферма прожила более ста лет - до тех пор, пока в 1732 году Леонард Эйлер не показал, что

2 32 +1 = 4 294 967 297 = 6 700 417 · 641

Затем еще почти через 150 лет (1880) Фортюне Ландри разложил на множители следующее число Ферма:

2 64 +1 = 18 446 744 073 709 551 617 = 274 177 · 67 280 421 310 721

Как они без помощи компьютеров смогли найти делители этих больших чисел - одному богу известно. В свою очередь Эйлер выдвинул гипотезу, что уравнение x 4 +y 4 +z 4 =u 4 не имеет решений в целых числах. Однако примерно через 250 лет, в 1988 году Науму Элькису из Гарварда удалось обнаружить (уже с помощью компьютерной программы), что

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4

Поэтому Большая теорема Ферма требовала доказательства, иначе она была просто гипотезой, и вполне могло быть, что где-то там в бескрайних числовых полях затеряно решение уравнения Великой теоремы.

Самый виртуозный и плодотворный математик XVIII века Леонард Эйлер, архив записей которого человечество разгребало почти целый век, доказал теорему Ферма для степеней 3 и 4 (вернее, он повторил утерянные доказательства самого Пьера Ферма); его последователь в теории чисел, Лежандр (а также независимо от него Дирихле) - для степени 5; Ламе - для степени 7. Но в общем виде теорема оставалась недоказанной.

1 марта 1847 года на заседании Парижской академии наук сразу два выдающихся математика - Габриэль Ламе и Огюстен Коши - заявили, что подошли к завершению доказательства Великой теоремы и устроили гонку, публикуя свои доказательства по частям. Однако поединок между ними был прерван, потому что в их доказательствах была обнаружена одна и та же ошибка, на которую указал немецкий математик Эрнст Куммер.

В начале XX века (1908) состоятельный немецкий предприниматель, меценат и ученый Пауль Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма. Уже в первый год после опубликования завещания Вольфскеля Геттингентской академией наук, она была завалена тысячами доказательств от любителей математики, и поток этот не прекращался в течение десятилетий, но все они, как вы догадываетесь, содержали в себе ошибки. Говорят, что в академии были заготовлены бланки примерно такого содержания:

Уважаемый __________________________!
В Вашем доказательстве теоремы Ферма на ____ странице в ____ строчке сверху
в формуле:__________________________ обнаружена следующая ошибка:,

Которые рассылались незадачливым соискателям премии.

В то время в кругу математиков появилось полупрезрительное прозвище - фермист . Так называли всякого самоуверенного выскочку, которому не хватало знаний, но зато с лихвой хватало амбиций для того, чтобы второпях попробовать силенки в доказательстве Великой теоремы, а затем, не заметив собственных ошибок, гордо хлопнув себя в грудь, громко заявить: "Я первый доказал теорему Ферма!". Каждый фермист, будь он хоть даже десятитысячным по счету, считал себя первым - это и было смешным. Простой внешний вид Великой теоремы так сильно напоминал фермистам легкую добычу, что их абсолютно не смущало, что даже Эйлер с Гауссом не смогли справиться с ней.

(Фермисты, как ни странно, существуют и ныне. Один из них хоть и не считал, что доказал теорему, как классический фермист, но до недавних пор предпринимал попытки - отказался верить мне, когда я сообщил ему, что теорема Ферма уже доказана).

Наиболее сильные математики, может быть, в тиши своих кабинетов тоже пробовали осторожно подходить к этой неподъемной штанге, но не говорили об этом вслух, дабы не прослыть фермистами и, таким образом, не навредить своему высокому авторитету.

К тому времени появилось доказательство теоремы для показателя степени n<100. Потом для n<619. Надо ли говорить о том, что все доказательства невероятно сложны. Но в общем виде теорема оставалась недоказанной.

Странная гипотеза

До середины ХХ века никаких серьезных продвижений в истории Великой теоремы не наблюдалось. Но вскоре в математической жизни произошло одно интересное событие. В 1955 году 28-летний японский математик Ютака Танияма выдвинул утверждение из совершенно другой области математики, получившее название "гипотезы Таниямы" (она же "гипотеза Таниямы-Шимуры-Вейла"), которое, в отличие от запоздалой теоремы Ферма, опередило свое время.

Гипотеза Таниямы гласит: "каждой эллиптической кривой соответствует определенная модулярная форма". Данное утверждение для математиков той поры звучало примерно так же абсурдно, как для нас звучит утверждение: "каждому дереву соответствует определенный металл". Нетрудно угадать, как может отнестись к подобному утверждению нормальный человек - он попросту не воспримет его всерьез, что и произошло: математики дружно проигнорировали гипотезу.

Небольшое пояснение. Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости). Модулярные же функции, открытые в XIX веке, имеют четырехмерный вид, поэтому мы их даже представить себе не можем своими трехмерными мозгами, но можем описать математически; кроме того, модулярные формы удивительны тем, что обладают предельно возможной симметрией - их можно транслировать (сдвигать) в любом направлении, отражать зеркально, менять местами фрагменты, поворачивать бесконечно многими способами - и при этом их вид не изменяется. Как видим, эллиптические кривые и модулярные формы имеют мало общего. Гипотеза же Таниямы утверждает, что описательные уравнения двух соответствующих друг другу этих абсолютно разных математических объектов можно разложить в один и тот же математический ряд.

Гипотеза Таниямы была слишком парадоксальна: она соединила совершенно разные понятия - довольно простые плоские кривые и невообразимые четырехмерные формы. Такое никому не приходило в голову. Когда на международном математическом симпозиуме в Токио в сентябре 1955 года Танияма продемонстрировал несколько соответствий эллиптических кривых модулярным формам, то все увидели в этом не более, чем забавные совпадения. На скромный вопрос Таниямы: возможно ли для каждой эллиптической кривой найти соответствующую модулярную функцию, маститый француз Андре Вейл, который в то время был одним из лучших в мире специалистов в теории чисел, дал вполне дипломатичный ответ, что, дескать, если пытливого Танияму не покинет энтузиазм, то, может быть, ему повезет, и его невероятная гипотеза подтвердится, но это, должно быть, случится не скоро. В общем, как и многие другие выдающиеся открытия, сначала гипотеза Таниямы осталась без внимания, потому что до нее еще не доросли - ее почти никто не понял. Один лишь коллега Таниямы, Горо Шимура, хорошо зная своего высокоодаренного друга, интуитивно чувствовал, что его гипотеза верна.

Через три года (1958) Ютака Танияма покончил жизнь самоубийством (сильны, однако, в Японии самурайские традиции). С точки зрения здравого смысла - никак не понимаемый поступок, особенно, если учесть, что совсем скоро он собирался жениться. Свою предсмертную записку лидер молодых японских математиков начал так: "Еще вчера я не помышлял о самоубийстве. Последнее время мне часто приходилось слышать от других, что я устал умственно и физически. Вообще-то я и сейчас не понимаю, зачем это делаю…" и так далее на трех листах. Жаль, конечно, что так сложилась судьба интересного человека, но все гении немного странные - на то они и гении (на ум почему-то пришли слова Артура Шопенгауэра: "в обычной жизни от гения столько же толку, как от телескопа в театре"). Гипотеза осиротела. Никто не знал, как ее доказать.

Лет десять про гипотезу Таниямы почти не вспоминали. Но в начале 70-х годов она стала популярной - ее регулярно проверяли все, кто смог в ней разобраться - и она всегда подтверждалась (как, собственно, и теорема Ферма), но, как и прежде, никто не мог ее доказать.

Удивительная связь двух гипотез

Прошло еще примерно 15 лет. В 1984 году произошло одно ключевое событие в жизни математики, которое объединило экстравагантную японскую гипотезу с Великой теоремой Ферма. Немец Герхард Фрей выдвинул любопытное утверждение, похожее на теорему: "Если будет доказана гипотеза Таниямы, то, следовательно, будет доказана и Великая теорема Ферма". Другими словами, теорема Ферма является следствием гипотезы Таниямы. (Фрей методом хитроумных математических преобразований свел уравнение Ферма к виду уравнения эллиптической кривой (той самой, которая фигурирует и в гипотезе Таниямы), более-менее обосновал свое предположение, но доказать его не смог). И вот буквально через полтора года (1986) профессор калифорнийского университета Кеннет Рибет четко доказал теорему Фрея.

Что же теперь получилось? Теперь оказалось, что, так как теорема Ферма уже точно является следствием гипотезы Таниямы, нужно всего-навсего доказать последнюю, чтобы сорвать лавры покорителя легендарной теоремы Ферма. Но гипотеза оказалась непростой. К тому же у математиков за столетия появилась аллергия на теорему Ферма, и многие из них решили, что справиться с гипотезой Таниямы также будет практически невозможно.

Смерть гипотезы Ферма. Рождение теоремы

Прошло еще 8 лет. Одному прогрессивному английскому профессору математики из Принстонского университета (Нью-Джерси, США), Эндрю Уайлсу, показалось, что он нашел доказательство гипотезы Таниямы. Если гений не лысый, то, как правило, взъерошенный. Уайлс - взъерошенный, следовательно, похож на гения. Войти в Историю, конечно, заманчиво и очень хотелось, но Уайлс, как настоящий ученый, не обольщался, понимая, что тысячам фермистов до него тоже мерещились призрачные доказательства. Поэтому, прежде, чем представить свое доказательство миру, он тщательно проверял его сам, но осознавая, что может иметь субъективную предвзятость, привлекал к проверкам также и других, например, под видом обычных математических заданий он иногда подкидывал смышленым аспирантам различные фрагменты своего доказательства. Позже Уайлс признался, что никто, кроме его жены не знал, что он работает над доказательством Великой теоремы.

И вот после долгих проверок и тягостных раздумий, Уайлс наконец-то набрался храбрости, а может, как ему самому казалось, наглости и 23 июня 1993 года на математической конференции по теории чисел в Кембридже объявил о своем великом достижении.

Это, конечно, была сенсация. Никто не ожидал такой прыти от малоизвестного математика. Тут же появилась пресса. Всех терзал жгучий интерес. Стройные формулы, как штрихи прекрасной картины, предстали перед любопытными взорами собравшихся. Настоящие математики, они ведь такие - смотрят на всякие уравнения и видят в них не цифры, константы и переменные, а слышат музыку, подобно Моцарту, смотрящему на нотный стан. Точно так же, как мы, читая книгу, смотрим на буквы, но вроде бы как их и не замечаем, а сразу воспринимаем смысл текста.

Презентация доказательства, казалось, прошла успешно - ошибок в нем не нашли - никто не услышал ни одной фальшивой ноты (хотя большинство математиков просто уставилось на него, как первоклассники на интеграл и ничего не поняли). Все решили, что произошло-таки масштабное событие: доказана гипотеза Таниямы, а следовательно и Великая теорема Ферма. Но примерно через два месяца, за несколько дней до того, как рукопись доказательства Уайлса должна была пойти в тираж, в ней было обнаружено несоответствие (Кац, коллега Уайлса, заметил, что один фрагмент рассуждений опирался на "систему Эйлера", но то, что соорудил Уайлс, такой системой не являлось), хотя в целом приемы Уайлса были признаны интересными, изящными и новаторскими.

Уайлс проанализировал ситуацию и решил, что проиграл. Можно себе представить, как он всем своим существом прочувствовал, что значит "от великого до смешного один шаг". "Хотел войти в Историю, а вместо этого вошел в состав команды клоунов и комедиантов - самонадеянных фермистов" - примерно такие мысли изматывали его в тот тягостный период жизни. Для него, серьезного ученого-математика, это была трагедия, и он забросил свое доказательство в долгий ящик.

Но вот через год с небольшим, в сентябре 1994 года, во время размышления над тем узким местом доказательства вместе со своим коллегой Тейлором из Оксфорда, последнего неожиданно осенила мысль, что "систему Эйлера" можно поменять на теорию Ивасава (раздел теории чисел). Тогда они попробовали воспользоваться теорией Ивасава, обойдясь без "системы Эйлера", и у них всё сошлось. Исправленный вариант доказательства был отдан на проверку и через год было объявлено, что в нем всё абсолютно четко, без единой ошибки. Летом 1995 года в одном из первенствующих математических журналов - "Анналы математики" - было опубликовано полное доказательство гипотезы Таниямы (следовательно, Великой (Большой) теоремы Ферма), которое заняло весь номер - свыше ста листов. Доказательство так сложно, что понять его целиком могли всего лишь несколько десятков человек во всем мире.

Таким образом, в конце ХХ века весь мир признал, что на 360 году своей жизни Великая теорема Ферма, которая на самом деле всё это время являлась гипотезой, стала-таки доказанной теоремой. Эндрю Уайлс доказал Великую (Большую) теорему Ферма и вошел в Историю.

Подумаешь, доказали какую-то теорему...

Счастье первооткрывателя всегда достается кому-то одному - это именно он последним ударом молота раскалывает твердый орешек знания. Но нельзя игнорировать множество предыдущих ударов, которые не одно столетие формировали трещину в Великой теореме: Эйлера и Гаусса (королей математики своих времен), Эвариста Галуа (успевшего за свою короткую 21-летнюю жизнь основать теории групп и полей, работы которого были признаны гениальными лишь после его смерти), Анри Пуанкаре (учредителя не только причудливых модулярных форм, но и конвенционализма - философского течения), Давида Гилберта (одного из сильнейших математиков ХХ века), Ютаку Танияму, Горо Шимуру, Морделла, Фальтингса, Эрнста Куммера, Барри Мазура, Герхарда Фрея, Кена Риббета, Ричарда Тейлора и других настоящих ученых (не побоюсь этих слов).

Доказательство Великой теоремы Ферма можно поставить в один ряд с такими достижениями ХХ века, как изобретение компьютера, ядерной бомбы и полет в космос. Хоть о нем и не так широко известно, потому что оно не вторгается в зону наших сиюминутных интересов, как например, телевизор или электрическая лампочка, но оно явилось вспышкой сверхновой звезды, которая, как и все непреложные истины, всегда будет светить человечеству.

Вы можете сказать: "подумаешь, доказали какую-то теорему, кому это надо? ". Справедливый вопрос. Тут в точности сгодится ответ Давида Гилберта. Когда на вопрос: "какая задача сейчас для науки наиболее важна?", он ответил: "поймать муху на обратной стороне Луны", его резонно спросили: "а кому это надо? ", он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить". Подумайте, сколько задач за 360 лет смогло решить человечество, прежде, чем доказать теорему Ферма. В поисках ее доказательства была открыта чуть ли не половина современной математики. Надо также учесть, что математика - авангард науки (и, кстати, единственная из наук, которая строится без единой ошибки), и любые научные достижения и изобретения начинаются именно здесь. Как заметил Леонардо да Винчи, "наукой можно признать лишь то учение, которое подтверждается математически".

* * *

А теперь давайте вернемся в начало нашей истории, вспомним запись Пьера Ферма на полях учебника Диофанта и еще раз зададимся вопросом: действительно ли Ферма доказал свою теорему? Этого мы, конечно, не можем знать наверняка, и как в любом деле тут возникают разные версии:

Версия 1: Ферма доказал свою теорему. (На вопрос: "имел ли Ферма точно такое же доказательство своей теоремы?", Эндрю Уайлс заметил: "Ферма не мог располагать таким доказательством. Это доказательство ХХ века". Мы с вами понимаем, что в XVII веке математика, конечно же, была не та, что в конце ХХ века - в ту эпоху д, Артаньяна, царица наук еще не обладала теми открытиями (модулярные формы, теоремы Таниямы, Фрея и др.), которые только и позволили доказать Великую теорему Ферма. Конечно, можно предположить: чем черт не шутит - а вдруг Ферма догадался иным путем? Эта версия хоть и вероятна, но по оценкам большинства математиков, практически невозможна);
Версия 2: Пьеру Ферма показалось, что он доказал свою теорему, но в его доказательстве были ошибки. (То есть, сам Ферма был также и первым фермистом);
Версия 3: Ферма свою теорему не доказал, а на полях просто соврал.

Если верна одна из двух последних версий, что наиболее вероятно, то тогда можно сделать простой вывод: великие люди, они хоть и великие, но тоже могут ошибаться или иногда не прочь приврать (в основном этот вывод будет полезен для тех, кто склонен безраздельно доверять своим кумирам и прочим властителям дум). Поэтому, читая произведения авторитетных сынов человечества или слушая их пафосные выступления, вы имеете полное право сомневаться в их утверждениях. (Прошу заметить, что сомневаться - не значит отвергать ).



Переиздание материалов статьи возможно только с обязательными ссылками на сайт (в интернете - гиперссылка) и на автора

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: