Сложные эфиры окончание. Сложные эфиры — понятие, свойства, применение. Номенклатура сложных эфиров

Сло́жные эфи́ры - производные оксокислот (как карбоновых, так и минеральных) RkE(=O)l(OH)m, (l ≠ 0), формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов)

Отличаются от простых эфиров, в которых два углеводородных радикала соединены атомом кислорода (R1-O-R2).

Общая формула сложных эфиров:

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Гомологический ряд сложных эфиров.

Общая формула сложных эфиров R1--CO---R2, где R1 и R2 - углеводные радикалы. Сложные эфиры - это производные кислот, у которых Н в гидроксиле замещен на радикал. Сложные эфиры называют по кислотам и спиртам. которые участвуют в образовании

Н-СО-О-СН3-- метилформиат или метиловый эфир муравьиной кислоты или муравьинометиловый эфир.

СН3-СО-О-С2Н5- этилацетат или этиловый эфир уксусной кислот или, уксусноэтиловый эфир..

С3Н7-СО-О-СН3 - метиловый эфир масляной кислоты или метилбутират

С3Н7-СО-О-С2Н5 - этиловый эфир масляной кислоты.или этилбутират

Короче тебе надо таблицу карбоновых кислот списать. а к ним название соли (муравьиная- формиат,уксусная- ацетат, пропионовая-пропинат.масляная бутират, валериановая-валериат, капроновая-капронат., энантовая-энантонат, щавелевая - оксалат. малоновая - малонат. янтарная- сукцинат....Смотри как образуются названия эфиров.

СН3- СО-О (это уксусная кислота без Н) --С5Н11-(это одновалентный радикал пентил(амил)- таблица) вот получается название этого эфира.

Уксусноамиловый эфир,аминовый эфир уксусной кислоты.амилацетат. Ещё смотри.

СН3СН2СН2СН2-СО-О (пентановая или валериановая к-та) ---С4Н9(это бутил) - бутилвалериат, валерианобутиловый эфир, бутиловый эфир валериановой кислоты.

Изомерия.

Для сложных эфиров характерна изомерия углеводородного скелета. Например, изомерами являются пропилацетат и изопропилацетат. Поскольку в молекуле сложного эфира содержится два углеводородных радикала - в остатке кислоты и в остатке спирта - то возможна изомерия каждого из радикалов. Например, изомерами являются пропилацетат и изопропилацетат (изомерия в спиртовом радикале) или этилбутират и этилизобутират (изомерия в кислотном радикале).

Физические свойства. Сложные эфиры - бесцветные жидкости, малорастворимые или совсем не растворимые в воде, обладают специфическим запахом (в малых концентрациях - приятным, часто фруктовым или цветочным). Сложные эфиры высших спиртов и высших кислот - твердые вещества.

Химические свойства . Наиболее характерная реакция для сложных эфиров - гидролиз. Гидролиз происходит в присутствии кислот или щелочей. При гидролизе сложного эфира в присутствии кислот образуется карбоновая кислота и спирт:

При гидролизе сложного эфира в присутствии щелочей образуются соль карбоновой кислоты и спирт:

Способы получения.

Способы получения сложных эфиров. Основные продукты и области их применения. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.

1. Взаимодействие кислот со спиртами:

Это наиболее распространенный способ получения сложных эфиров.

2. Синтез сложных эфиров методом конденсации альдегидов:

Синтез сложных эфиров из альдегидов (реакция Тищенко) осуществляется в присутствии алкоголята алюминия, активированного хлоридом железа или, что лучше, хлоридом алюминия и окисью цинка. Данный метод имеет промышленное значение.

3. Присоединение органических кислот к алкенам:

4. Синтез сложных эфиров путем дегидрогенизации спиртов:

5. Получение сложных эфиров методом переэтерификации.

Данная реакция имеет две разновидности: реакция обмена между эфиром и спиртом спиртовыми радикалами (реакция алкоголиза):

и реакция обмена кислотными радикалами у спиртовой группы эфира:

6. Синтез эфиров из ангидридов кислот и спиртов:

7. Взаимодействие кетонов со спиртами:

8. Взаимодействие между галоидангидридами и спиртами:

9. Реакция между серебряными или калиевыми солями кислот и алифатическими галоидными производными:

10. Взаимодействие кислот с алифатическими диазосоединениями

Применение.

Некоторые сложные эфиры используют как растворители (наибольшее практическое значение имеет этилацетат). Многие сложные эфиры благодаря приятному запаху применяются в пищевой и парфюмернокосметической промышленности. Сложные эфиры непредельных кислот используют для производства оргстекла, наиболее широко для этой цели используется метилметакрилат.

На тему

«Простые и сложные эфиры»

Выполнила:Манжиева А.А.

Тема урока: Сложные эфиры. Состав. Номенклатура. Свойства. Применение.

Цели урока :

Рассмотреть состав и строение простейших сложных эфиров, сущность реакции этерификации.

Создать условия для развития умений самостоятельно приобретать знания, используя различные

источники информации.

Способствовать: 1. формированию опыта творческой деятельности, опыта делового общения.

2. развитию творческого мышления, памяти, внимания, наблюдательности.

Продолжить формировать умения учащихся самостоятельно анализировать, корректировать и

оценивать знания;

Важнейшая задача учителя состоит в том, чтобы поддерживать и направлять учащихся, не давать готовые знания, а учит добывать их из различных источников.

Тип урока : Урок изучения нового материала с элементами исследования и использованием презентации по данной теме.

Форма организации познавательной деятельности : работа в группах с использованием ИКТ.

На столе учителя: мыло разных видов, духи, лаки, цветы (герань, фиалки), свежие фрукты: лимон, апельсин, мандарин, масло бергамота, лаванды и др.

Эпиграф урока :

В аромате есть убедительность, которая сильнее слов, очевидности, чувства и воли. Убедительность аромата неопровержима, необорима, она входит в нас подобно тому, как входит в наши лёгкие воздух, которым мы дышим, она наполняет, заполняет нас до отказа. Против неё нет средства. Патрик Зюскинд. «Парфюмер»(Слайд 1)(Слайд2)

Ход урока :

Вступительное слово учителя (мотивация на изучаемую тему)

Действительно, приятные ароматы способны не просто доставить нам удовольствие, а стать причиной хорошего настроения, повысить работоспособность, они могут понижать кровеносное давление и повышать температуру кожи. Когда в орган обоняния человека попадает неприятный запах, человек непроизвольно задерживает свое дыхание, стараясь по возможности вдохнуть как можно меньше неприятного воздуха. Нежелательный запах снижать работоспособность и значительно угнетать человека. (Обращаю внимание учащихся на предметы, находящиеся на столе учителя.)Все они обладают запахами. Какие же вещества являются причиной разнообразных запахов? В основном это - сложные эфиры.(Объявляется тема урока)(Слайд3)

Опрос :

Задание1 (на 4 мин), затем контроль ответов учащихся у доски.(Слайд 4)

1 группа : Записать общую формулу предельных одноатомных спиртов. Привести примеры четырех любых спиртов;дать им название по международной и тривиальной номенклатуре.

С n Н2 n +2 О или С n Н2 n +1 ОН R - OH СН3ОН - метанол, метиловій спирт, С2 Н5ОН-этанол, этиловый спирт

С3 Н7ОН - пропанол, пропиловый спирт С4 Н9ОН - бутанол, бутиловый спирт

2 группа : Записать общую формулу предельных одноосновных карбоновых кислот, привести примеры четырех любых карбоновых кислот; дать им название по международной и тривиальной номенклатуре. С n Н2 n О R - CO - OH H-CO-OH метановая. муравьиная,

СH3 - CO-OH этановая, уксусная. СH3 - СН2 - CO-OH пропановая, пропионовая

СH3 - СН2 - СН2 - CO-OH бутановая, масляная.

3 группа : составить уравнение взаимодействия метанола с муравьиной и уксусной карбоновыми кислотами, дать название образовавшимся орг. веществам.

Изучение нового материала: Прошу вспомнить название реакции взаимодействия карбоновой кислоты со спиртом (по материалам предыдущих уроков) и какое вещество образуется в результате этого взаимодействия.

Данная реакция называется реакцией этерификации(Слайд 5)

R-CO-OH + HO-R1 ↔ RCO-OR1 + H2O

Общая формула сложных эфиров

R-C –O-R

С n H2nO2

Вопрос: Какой класс органических соединений имеет такую же общую формулу? (предельные одноосновные карбоновые кислоты)

Предлагаю учащимся записать в тетрадь определения сложным эфирам (Слайд 6)

Сложные эфиры - это вещества, образующиеся в результате реакции дегидратации карбоновых кислот и спиртов.

Сложными эфирами называются органические вещества, которые имеют общую формулу RCOOR1.

Сложными эфирами называются органические вещества, которые содержат функциональную группу атомов – СОО - ,соединённую с двумя углеводородными радикалами.

Задаю вопрос: А как называют сложные эфиры по международной номенклатуре? (Слайд 7)

По международной номенклатуре названия сложным эфирам дается так: к названию предельного углеводородного радикала в спирте добавляется название соответствующей кислоты, в которой окончание - вая заменяется на суффикс – ат.

Задание 2

Группы1 и 2: Записать в таблице названия эфиров по международной номенклатуре по предложенным формулам (распечатаны в файлах) .(Слайд 8)

Формула эфира

Название эфира

С4Н9-СОО-С5Н11

С3Н7- СОО-С2Н5

СН3-СН(СН3)-СН2СОО- С2Н5

СН3-СОО - С2Н5

Н – СОО – С2Н5

Апельсиновый

Абрикосовый

Яблочный

Грушевый

Вишнёвый

Группа 3: По названиям составить формулы сложных эфиров

Формула эфира

Название эфира

Грушевый

Вишнёвый

Абрикосовый

Апельсиновый

Яблочный

Этилэтанат

Этилметанат

Этилбутанат

Пентилтентанат

Этил,3-метилбутанат

Учащиеся сверяют данные таблицы на слайде с записями в тетради, исправляют ошибки(Слайд9)

Задание3 (использование таблицы) (слайд 10)

1гр. Составить уравнение реакции этерификации получения эфира - с вишневым ароматом.

1.Н-СООН + С2Н5ОН ↔ Н - СООС2Н5 + Н2О

2 гр. Составить уравнение реакции этерификации получения эфира с грушевым ароматом.

2.СН3 - СООН + С2Н5ОН ↔ Н - СООС2Н5 + Н2О

3 гр Составить уравнение реакции этерификации получения эфира с яблочным ароматом.

3. СН3-СН(СН3)-СН2СООН + НО - С2Н5↔ СН3-СН(СН3)-СН2СОО- С2Н5+ Н2О

Виды изомерии сложных эфиров: (Слайд 11)

1. Углеродного скелета

2. Межклассовая (предельные одноосновные карбоновые кислоты)

Задание4 (Слайд 12)

С5Н10О2

1гр. Составить 2 формулы изомеров с различным углеродным скелетом и назвать их по МН.

2гр. Составить 2 формулы изомеров из различных классов и назвать их по МН.

3гр. Составить по одной формуле изомеров с различным углеродным скелетом и из класса карбоновых кислот и назвать их по МН.

Физические свойства сложных эфиров (Слайд13)

Сложные эфиры – жидкости, легче воды, летучие, обладающие приятным запахом в большинстве случаев, t°кип. и t° пл. ниже, чем t°кип. и t°пл. исходных карбоновых кислот, в воде плохо растворимы, за исключением эфиров с меньшим содержанием атомов углерода, хорошо растворимы в спиртах.

Химические свойства сложных эфиров(Слайд14)

Реакция этерификации протекает очень медленно и, как правило, не до конца т. к. происходит гидролиз сложных эфиров (омыление), при этом образуются вновь исходные вещества – спирт и кислота. Омыление проходит гораздо быстрее, если реакция проходит в щелочной среде.

RCO-OR1 + H2O ↔ R-CO-OH + HO-R1

Например:

Н - СООС2Н5 + Н2О ↔ Н-СООН + С2Н5ОН

Элемент исследования на уроке

Задание 5 (Слайд15)

С помощью предложенной информации (файлы с материалами на столах) подготовить небольшие сообщения по группам:

1 гр. Из чего сделаны духи?

2 гр. Сложные эфиры в лекарственных растениях

3 гр. Что такое воск?

Проверочный тест на закрепление изученного материала (Слайд16)

1. Общая формула сложных эфиров:

А)CnH2nO Б)CnH2nO2 В)CnH2n+2O Г) CnH2n

2. Cложные эфиры - это продукт взаимодействия:

1. Карбоновых кислот и альдегидов

2. Спиртов и альдегидов

3. Карбоновых кислот и спиртов

4. Спиртов и простых эфиров

3 .В результате какой реакции образуются сложные эфиры?:

1. Этерификации

2. Полимеризации

3. Поликонденсации

4. Гидролиза

А

Домашнее задание: §21 стр190-192 №1,2,3.стр195(схему 5 в тетрадь)

– класс соединений на основе минеральных (неорганических) или органических карбоновых кислот, у которых атом водорода в НО-группе замещен органической группой R . Прилагательное «сложные» в названии эфиров помогает отличить их от соединений, именуемых простыми эфирами.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров. Название создается следующим образом: вначале указывается группа R , присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров. Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии ).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный
При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов

ROH , все жиры представляют собой сложные эфиры, спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров. Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами

RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка. Применение сложных эфиров. Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

ЛИТЕРАТУРА Карцова А.А. Покорение вещества. Органическая химия . Издательство Химиздат, 1999
Пустовалова Л.М. Органическая химия . Феникс, 2003

Производные карбоновых или неорганических кислот, в которых атом водорода в гидроксильной группе замещён радикалом, называются сложными эфирами. Обычно общую формулу сложных эфиров обозначают как два углеводородных радикала, присоединённых к карбоксильной группе - C n H 2n+1 -COO-C n H 2n+1 или R-COOR’.

Номенклатура

Названия сложных эфиров составляются из названий радикала и кислоты с суффиксом «-ат». Например:

  • CH 3 COOH - метилформиат;
  • HCOOCH 3 - этилформиат;
  • CH 3 COOC 4 H 9 - бутилацетат;
  • CH 3 -CH 2 -COO-C 4 H 9 - бутилпропионат;
  • CH 3 -SO 4 -CH 3 - диметилсульфат.

Также используются тривиальные названия кислоты, входящей в состав соединения:

  • С 3 Н 7 СООС 5 Н 11 - амиловый эфир масляной кислоты;
  • HCOOCH 3 - метиловый эфир муравьиной кислоты;
  • CH 3 -COO-CH 2 -CH(CH 3) 2 - изобутиловый эфир уксусной кислоты.

Рис. 1. Структурные формулы сложных эфиров с названиями.

Классификация

В зависимости от происхождения сложные эфиры делятся на две группы:

  • эфиры карбоновых кислот - содержат углеводородные радикалы;
  • эфиры неорганических кислот - включают остаток минеральных солей (C 2 H 5 OSO 2 OH, (CH 3 O)P(O)(OH) 2 , C 2 H 5 ONO).

Наиболее разнообразны сложные эфиры карбоновых кислот. От сложности строения зависят их физические свойства. Эфиры низших карбоновых кислот - летучие жидкости с приятным ароматом, высших - твёрдые вещества. Это плохо растворимые соединения, плавающие на поверхности воды.

Виды сложных эфиров карбоновых кислот приведены в таблице.

Вид

Описание

Примеры

Фруктовые эфиры

Жидкости, молекулы которых включают не более восьми атомов углерода. Обладают фруктовым ароматом. Состоят из одноатомных спиртов и карбоновых кислот

  • CH 3 -COO-CH 2 -CH 2 -CH(CH 3) 2 - изоамиловый эфир уксусной кислоты (запах груши);
  • C 3 H 7 -COO-C 2 H 5 - этиловый эфир масляной кислоты (запах ананаса);
  • CH 3 -COO-CH 2 -CH-(CH 3) 2 - изобутиловый эфир уксусной кислоты (запах банана).

Жидкие (масла) и твёрдые вещества, содержащие от девяти до 19 атомов углерода. Состоят из глицерина и остатков карбоновых (жирных) кислот

Оливковое масло - смесь глицерина с остатками пальмитиновой, стеариновой, олеиновой, линолевой кислот

Твёрдые вещества с 15-45 атомами углерода

CH 3 (CH 2) 14 -CO-O-(CH 2) 29 CH 3 -мирицилпальмитат

Рис. 2. Воск.

Сложные эфиры карбоновых кислот - главная составляющая ароматных эфирных масел, которые содержатся в плодах, цветах, ягодах. Также входят в состав пчелиного воска.

Рис. 3. Эфирные масла.

Получение

Получают сложные эфиры несколькими способами:

  • реакцией этерификации карбоновых кислот со спиртами:

    CH 3 COOH + C 2 H 5 OH → CH 3 COOC 2 H 5 + H 2 O;

  • реакцией ангидридов карбоновых кислот со спиртами:

    (CH 3 CO) 2 O + 2C 2 H 5 OH → 2CH 3 COOC 2 H 5 + H 2 O;

  • реакцией солей карбоновых кислот с галогенуглеводородами:

    CH 3 (CH 2) 10 COONa + CH 3 Cl → CH 3 (CH 2) 10 COOCH 3 + NaCl;

  • реакцией присоединения карбоновых кислот к алкенам:

    CH 3 COOH + CH 2 =CH 2 → CH 3 COOCH 2 CH 3 + H 2 O.

Свойства

Химические свойства сложных эфиров обусловлены функциональной группой -COOH. Основные свойства сложных эфиров описаны в таблице.

Сложные эфиры используются в косметологии, медицине, пищевой промышленности в качестве ароматизаторов, растворителей, наполнителей.

Что мы узнали?

Из темы урока химии 10 класса узнали, что такое сложные эфиры. Это соединения, включающие два радикала и карбоксильную группу. В зависимости от происхождения могут содержать остатки минеральных или карбоновых кислот. Сложные эфиры карбоновых кислот делятся на три группы: жиры, воски, фруктовые эфиры. Это плохо растворимые в воде вещества с небольшой плотностью и приятным ароматом. Сложные эфиры реагируют со щелочами, водой, галогенами, спиртами и аммиаком.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 88.

Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры - соедине­ ния, представляющие карбоновые кислоты, у которых атом водо рода в карбоксильной группе заменен углеводородным радикалом . Общая формула сложных эфиров

Часто сложные эфиры называют по тем остаткам кислот и спиртов, из которых они состоят. Так, рассмотренные выше сложные эфиры могут быть названы: этановоэтиловый эфир, кро тоновометиловый эфир.

Для сложных эфиров характерны три вида изомерии :

1. Изомерия углеродной цепи, начинается по кислотному/>остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например:

2. Изомерия положения сложноэфирной группировки />-СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, на­ пример: />

3. Межклассовая изомерия, например:

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи; цис-транс-изомерия.

Физические свойства сложных эфиров. Сложные эфиры />низших карбоновых кислот и спиртов представляют собой лету­чие, малорастворимые или практически нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат - груши и т.д.

Сложные эфиры имеют, как правило, более низкую темпера­ туру кипения, чем соответствующие им кислоты. Например, стеа­ риновая кислота кипит при 232 °С (Р = 15 мм рт. ст.), а ме тилстеарат- при 215 °С (Р =15 мм рт. ст.). Объясняется это тем, что между молекулами сложных эфиров отсутствуют водородные связи.

Сложные эфиры высших жирных кислот и спиртов - воско­ образные вещества, не имеют запаха, в воде не растворимы, хо­ рошо растворимы в органических растворителях. Например, пче­линый воск представляет собой в основном мирицилпальмитат (C 15 H 31 COOC 31 H 63 ).

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: