Как построить график y ax2 bx c. ГИА. Квадратичная функция. Видеоуроки с параболой

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

Конспект урока по алгебре для 8 класса средней общеобразовательной школы

Тема урока : Функция


Цель урока:

· Образовательная: определить понятие квадратичной функции вида (сравнить графики функций и ), показать формулу нахождения координат вершины параболы (научить применять данную формулу на практике); сформировать умение определения свойств квадратичной функции по графику (нахождение оси симметрии, координат вершины параболы, координат точек пересечения графика с осями координат).

· Развивающая : развитие математической речи, умения правильно, последовательно и рационально излагать свои мысли; развитие навыка правильной записи математического текста при помощи символов и обозначений; развитие аналитического мышления; развитие познавательной деятельности учащихся через умение анализировать, систематизировать и обобщать материал.

· Воспитательная : воспитание самостоятельности, умения выслушать других, формирование аккуратности и внимания в письменной математической речи.

Тип урока : изучение нового материала.

Методы обучения:

обобщенно-репродуктивный, индуктивно-эвристический.

Требования к знаниям и умениям учащихся

знать, что такое квадратичная функция вида , формулу нахождения координат вершины параболы; уметь находить координаты вершины параболы, координаты точек пересечения графика функции с осями координат, по графику функции определять свойства квадратичной функции.

Оборудование :


План урока

I. Организационный момент (1-2 мин)

II. Актуализация знаний (10 мин)

III. Изложение нового материала (15 мин)

IV. Закрепление нового материала (12 мин)

V. Подведение итогов (3 мин)

VI. Задание на дом (2 мин)


Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих, сбор тетрадей.

II. Актуализация знаний

Учитель : На сегодняшнем уроке мы изучим новую тему: "Функция ". Но для начала повторим ранее изученный материал.

Фронтальный опрос:

1) Что называется квадратичной функцией? (Функция , где заданные действительные числа, , действительная переменная, называется квадратичной функцией.)

2) Что является графиком квадратичной функции? (Графиком квадратичной функции является парабола.)

3) Что такое нули квадратичной функции? (Нули квадратичной функции – значения , при которых она обращается в нуль.)

4) Перечислите свойства функции . (Значения функции положительны при и равно нулю при ; график функции симметричен относительно ос ординат; при функция возрастает, при - убывает.)

5) Перечислите свойства функции . (Если , то функция принимает положительные значения при , если , то функция принимает отрицательные значения при , значение функции равно 0 только; парабола симметрична относительно оси ординат; если , то функция возрастает при и убывает при , если , то функция возрастает при , убывает – при .)


III. Изложение нового материала

Учитель : Приступим к изучению нового материала. Откройте тетради, запишите число и тему урока. Обратите внимание на доску.

Запись на доске : Число.

Функция .

Учитель : На доске вы видите два графика функций. Первый график , а второй . Давайте попробуем сравнить их.

Свойства функции вы знаете. На их основании, и сравнивая наши графики, можно выделить свойства функции .

Итак, как вы думаете, от чего будет зависеть направление ветвей параболы ?

Ученики: Направление ветвей обеих парабол будет зависеть от коэффициента .

Учитель: Совершенно верно. Так же можно заметить, что у обеих парабол есть ось симметрии. У первого графика функции, что является осью симметрии?

Ученики: У параболы вида осью симметрии является ось ординат.

Учитель: Верно. А что является осью симметрии параболы


Ученики: Осью симметрии параболы является линия, которая проходит через вершину параболы, параллельно оси ординат.

Учитель : Правильно. Итак, осью симметрии графика функции будем называть прямую, проходящую через вершину параболы, параллельную оси ординат.

А вершина параболы – это точка с координатами . Они определяются по формуле:

Запишите формулу в тетрадь и обведите в рамочку.

Запись на доске и в тетрадях

Координаты вершины параболы.

Учитель : Теперь, чтобы было более понятно, рассмотрим пример.

Пример 1 : Найдите координаты вершины параболы .

Решение: По формуле


Учитель : Как мы уже отметили, ось симметрии проходит через вершину параболы. Посмотрите на доску. Начертите этот рисунок в тетради.

Запись на доске и в тетрадях:

Учитель: На чертеже: - уравнение оси симметрии параболы с вершиной в точке , где абсцисса вершины параболы.

Рассмотрим пример.

Пример 2: По графику функции определите уравнение оси симметрии параболы.


Уравнение оси симметрии имеет вид: , значит, уравнение оси симметрии данной параболы .

Ответ: - уравнение оси симметрии.

IV.Закрепление нового материала

Учитель : На доске записаны задания, которые необходимо решить в классе.

Запись на доске : № 609(3), 612(1), 613(3)

Учитель: Но сначала решим пример не из учебника. Решать будем у доски.

Пример 1: Найти координаты вершины параболы

Решение: По формуле

Ответ: координаты вершины параболы.

Пример 2: Найти координаты точек пересечения параболы с осями координат.

Решение: 1) С осью :


Т.е.

По теореме Виета:

Точки пересечения с осью абсцисс (1;0) и (2;0).

2) С осью :

Точка пересечения с осью ординат (0;2).

Ответ: (1;0), (2;0), (0;2) – координаты точек пересечения с осями координат.

Конспект урока по алгебре для 8 класса средней общеобразовательной школы

Тема урока : Функция

Цель урока:

· Образовательная: определить понятие квадратичной функции вида (сравнить графики функций и ), показать формулу нахождения координат вершины параболы (научить применять данную формулу на практике); сформировать умение определения свойств квадратичной функции по графику (нахождение оси симметрии, координат вершины параболы, координат точек пересечения графика с осями координат).

· Развивающая : развитие математической речи, умения правильно, последовательно и рационально излагать свои мысли; развитие навыка правильной записи математического текста при помощи символов и обозначений; развитие аналитического мышления; развитие познавательной деятельности учащихся через умение анализировать, систематизировать и обобщать материал.

· Воспитательная : воспитание самостоятельности, умения выслушать других, формирование аккуратности и внимания в письменной математической речи.

Тип урока : изучение нового материала.

Методы обучения:

обобщенно-репродуктивный, индуктивно-эвристический.

Требования к знаниям и умениям учащихся

знать, что такое квадратичная функция вида , формулу нахождения координат вершины параболы; уметь находить координаты вершины параболы, координаты точек пересечения графика функции с осями координат, по графику функции определять свойства квадратичной функции.

Оборудование :

План урока

I. Организационный момент (1-2 мин)

II. Актуализация знаний (10 мин)

III. Изложение нового материала (15 мин)

IV. Закрепление нового материала (12 мин)

V. Подведение итогов (3 мин)

VI. Задание на дом (2 мин)

Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих, сбор тетрадей.

II. Актуализация знаний

Учитель : На сегодняшнем уроке мы изучим новую тему: "Функция ". Но для начала повторим ранее изученный материал.

Фронтальный опрос:

1) Что называется квадратичной функцией? (Функция , где заданные действительные числа, , действительная переменная, называется квадратичной функцией.)

2) Что является графиком квадратичной функции? (Графиком квадратичной функции является парабола.)

3) Что такое нули квадратичной функции? (Нули квадратичной функции – значения , при которых она обращается в нуль.)

4) Перечислите свойства функции . (Значения функции положительны при и равно нулю при ; график функции симметричен относительно ос ординат; при функция возрастает, при - убывает.)

5) Перечислите свойства функции . (Если , то функция принимает положительные значения при , если , то функция принимает отрицательные значения при , значение функции равно 0 только; парабола симметрична относительно оси ординат; если , то функция возрастает при и убывает при , если , то функция возрастает при , убывает – при .)

III. Изложение нового материала

Учитель : Приступим к изучению нового материала. Откройте тетради, запишите число и тему урока. Обратите внимание на доску.

Запись на доске : Число.

Функция .

Учитель : На доске вы видите два графика функций. Первый график , а второй . Давайте попробуем сравнить их.

Свойства функции вы знаете. На их основании, и сравнивая наши графики, можно выделить свойства функции .

Итак, как вы думаете, от чего будет зависеть направление ветвей параболы ?

Ученики: Направление ветвей обеих парабол будет зависеть от коэффициента .

Учитель: Совершенно верно. Так же можно заметить, что у обеих парабол есть ось симметрии. У первого графика функции, что является осью симметрии?

Ученики: У параболы вида осью симметрии является ось ординат.

Учитель: Верно. А что является осью симметрии параболы

Ученики: Осью симметрии параболы является линия, которая проходит через вершину параболы, параллельно оси ординат.

Учитель : Правильно. Итак, осью симметрии графика функции будем называть прямую, проходящую через вершину параболы, параллельную оси ординат.

А вершина параболы – это точка с координатами . Они определяются по формуле:

Запишите формулу в тетрадь и обведите в рамочку.

Запись на доске и в тетрадях

Координаты вершины параболы.

Учитель : Теперь, чтобы было более понятно, рассмотрим пример.

Пример 1 : Найдите координаты вершины параболы .

Решение: По формуле

имеем:

Учитель : Как мы уже отметили, ось симметрии проходит через вершину параболы. Посмотрите на доску. Начертите этот рисунок в тетради.

Запись на доске и в тетрадях:

Учитель: На чертеже: - уравнение оси симметрии параболы с вершиной в точке , где абсцисса вершины параболы.

Рассмотрим пример.

Пример 2: По графику функции определите уравнение оси симметрии параболы.

Уравнение оси симметрии имеет вид: , значит, уравнение оси симметрии данной параболы .

Ответ: - уравнение оси симметрии.

IV.Закрепление нового материала

Учитель : На доске записаны задания, которые необходимо решить в классе.

Запись на доске : № 609(3), 612(1), 613(3)

Учитель: Но сначала решим пример не из учебника. Решать будем у доски.

Пример 1: Найти координаты вершины параболы


Решение: По формуле

имеем:

Ответ: координаты вершины параболы.

Пример 2: Найти координаты точек пересечения параболы с осями координат.

Решение: 1) С осью :

Т.е.

По теореме Виета:

Точки пересечения с осью абсцисс (1;0) и (2;0).

2) С осью :

VI.Домашнее задание

Учитель: На доске записано задание на дом. Запишите его в дневники.

Запись на доске и в дневниках: §38, № 609(2), 612(2), 613(2).

Литература

1. Алимов Ш.А. Алгебра 8 класс

2. Саранцев Г.И. Методика обучения математике в средней школе

3. Мишин В.И. Частная методика преподавания математики в средней школе

Презентация «Функция y=ax 2 , ее график и свойства» является наглядным пособием, которое создано для сопровождения объяснения учителя по данной теме. В данной презентации подробно рассматривается квадратичная функция, ее свойства, особенности построения графика, практическое приложение используемых методов решения задач в физике.

Предоставляя высокую степень наглядности, данный материал поможет учителю повысить эффективность обучения, даст возможность более рационально распределить время на уроке. При помощи анимационных эффектов, выделения понятий и важных моментов цветом, внимание учеников акцентируется на изучаемом предмете, достигается лучшее запоминание определений и хода рассуждения при решении задач.


Презентация начинается с ознакомления с названием презентации и понятием квадратичной функции. Подчеркивается важность данной темы. Ученикам предлагается запомнить определение квадратичной функции как функциональной зависимости вида y=ax 2 +bx+c, в которой является независимой переменной, а - числа, при этом a≠0. Отдельно на слайде 4 отмечается для запоминания, что областью определения данной функции является вся ось действительных значений. Условно данное утверждения обозначается D(x)=R.


Примером квадратичной функции является важное ее приложение в физике - формула зависимости пути при равноускоренном движении от времени. Параллельно на уроках физики ученики изучают формулы различных видов движения, поэтому умение решать подобные задачи им будет необходимо. На слайде 5 ученикам напоминается, что при движении тела с ускорением и на начало отсчета времени известен пройденный путь и скорость движения, то функциональная зависимость, представляющая такое движение, будет выражаться формулой S=(at 2)/2+v 0 t+S 0 . Ниже приводится пример превращения данной формулы в заданную квадратичную функцию, если значения ускорения =8, начальной скорости =3 и начального пути =18. В этом случае функция приобретет вид S=4t 2 +3t+18.


На слайде 6 рассматривается вид квадратичной функции y=ax 2 , в котором она представляется при. Если же =1, то квадратичная функция имеет вид y=x 2 . Отмечается, что графиком данной функции будет парабола.

Следующая часть презентации посвящена построению графика квадратичной функции. Предлагается рассмотреть построение графика функции y=3x 2 . Сначала в таблице отмечается соответствие значений функции значениям аргумента. Отмечается, что отличие построенного графика функции y=3x 2 от графика функции y=x 2 в том, что каждое значение ее будет больше соответствующего в три раза. В табличном представлении эта разница хорошо отслеживается. Рядом в графическом представлении также хорошо заметна разница в сужении параболы.


На следующем слайде рассматривается построение графика квадратичной функции y=1/3 x 2 . Для построения графика необходимо в таблице указать значения функции в ряде ее точек. Отмечается, что каждое значение функции y=1/3 x 2 меньше соответствующего значения функции y=x 2 в 3 раза. Данная разница, кроме таблицы, хорошо видна и на графике. Ее парабола более расширена относительно оси ординат, чем парабола функции y=x 2 .


Примеры помогают усвоить общее правило, согласно которому можно затем более просто и быстро производить построение соответствующих графиков. На слайде 9 выделено отдельно правило, что график квадратичной функции y=ax 2 можно построить в зависимости от значения коэффициента растяжением или сужением графика. Если a>1, то график растягивается от оси х в раз. Если же 0

Вывод о симметричности графиков функций y=ax 2 и y=-ax2 (при ≠0) относительно оси абсцисс отдельно выделен на слайде 12 для запоминания и наглядно отображен на соответствующем графике. Далее понятие о графике квадратичной функции y=x 2 распространяется на более общий случай функции y=ax 2 , утверждая, что такой график также будет называться параболой.


На слайде 14 рассматриваются свойства квадратичной функции y=ax 2 при положительном. Отмечается, что ее график проходит через начало координат, а все точки, кроме, лежат в верхней полуплоскости. Отмечена симметричность графика относительно оси ординат, уточняя, что противоположным значениям аргумента соответствуют одинаковые значения функции. Указано, что промежуток убывания данной функции (-∞;0], а возрастание функции выполняется на промежутке. Значения данной функции охватывают всю положительную часть действительной оси, нулю она равна в точке, а наибольшего значения не имеет.

На слайде 15 описываются свойства функции y=ax 2 , если отрицательный. Отмечается, что ее график также проходит через начало координат, но все его точки, кроме, лежат в нижней полуплоскости. Отмечена симметричность графика относительно оси, и противоположным значениям аргумента соответствуют равные значения функции. Возрастает функция на промежутке, убывает на. Значения данной функции лежат в промежутке, нулю она равна в точке, а наименьшего значения не имеет.


Обобщая рассмотренные характеристики, на слайде 16 выводится, что ветви параболы направлены вниз при, а вверх - при. Парабола симметрична относительно оси, а вершина параболы располагается в точке ее пересечения с осью. У параболы y=ax 2 вершина - начало координат.

Также важный вывод о преобразованиях параболы отображается на слайде 17. На нем представлены варианты преобразований графика квадратичной функции. Отмечено, что график функции y=ax 2 преобразуется симметричным отображением графика относительно оси. Также возможно сжатие или растяжение графика относительно оси.

На последнем слайде делаются обобщающие выводы о преобразованиях графика функции. Представлены выводы о том, что график функции получается симметрическим преобразованием относительно оси. А график функции получается из сжатием или растяжением исходного графика от оси. При этом растяжение от оси в раз наблюдается в случае, когда. Сжатием к оси в 1/a раз график образуется в случае.


Презентация «Функция y=ax 2 , ее график и свойства» может быть использована учителем в качестве наглядного пособия на уроке алгебры. Также данное пособие хорошо раскрывает тему, давая углубленное понимание предмета, поэтому может быть предложена для самостоятельного изучения учениками. Также данный материал поможет учителю дать объяснение в ходе дистанционного обучения.

Описание видеоурока

Рассмотрим некоторые частные случаи квадратичной функции.

Первый случай. Выясним, что представляет собой график функции игрек равно одна третья икс квадрат плюс четыре.

Для этого в одной системе координат построим графики функций игрек равно одна третья икс квадрат.. и..игрек равно одна третья икс квадрат плюс четыре.

Составим таблицу значений функции игрек равно одна третья икс квадрат. Построим по заданным точкам график функции.

Чтобы получить таблицу значений функции игрек равно одна третья икс квадрат плюс четыре при тех же значениях аргумента, следует к найденным значениям функции игрек равно одна третья икс квадрат.. прибавить четыре.

Составим таблицу значений для графика функции игрек равно одна третья икс квадрат плюс четыре. Построим по указанным координатам точки и соединим их плавной линией. Получим график функции игрек равно одна третья икс квадрат плюс четыре.

Легко понять, что график функции игрек равно одна третья икс квадрат плюс четыре можно получить из графика функции игрек равно одна третья икс квадрат с помощью параллельного переноса на четыре единицы вверх вдоль оси игрек.

Таким образом, график функции игрек равно а икс квадрат плюс эн является параболой, которая получается из графика функции игрек равно а икс квадрат с помощью параллельного переноса вдоль оси игрек на модуль эн единиц вверх, если эн больше нуля или вниз, если эн меньше нуля.

Второй случай. Рассмотрим функцию игрек равно одна третья квадрата разности чисел икс и шесть и построим ее график.

Построим таблицу значений функции игрек равно одна третья икс квадрат, укажем полученные точки на координатной плоскости и соединим плавной линией.

Теперь составим таблицу значений для функции игрек равно одна третья квадрата разности чисел икс и шесть. По указанным точкам построим график функции.

Заметно, что каждая точка второго графика получается из соответствующей точки первого графика с помощью параллельного переноса на шесть единиц вдоль оси икс.

График функции игрек равно а умноженное на квадрат разности икс и эм.. является параболой, которую можно получить из графика функции игрек равно а икс квадрат с помощью параллельного переноса вдоль оси икс на модуль эм единиц влево, если эм больше нуля или на модуль эм единиц вправо, если эм меньше нуля.

Рассмотрим теперь график функции игрек равно одна третья умножить на квадрат разности икс и два плюс пять. Ее график можно получить из графика функции игрек равно одна третья икс квадрат с помощью двух параллельных переносов - сдвига параболы вправо на две единицы и вверх на пять единиц.

При этом производить параллельные переносы можно в любом порядке: сначала выполнить вдоль оси икс, а затем вдоль оси игрек или наоборот.

Но почему при добавлении к функции числа эн ее график перемещается на модуль эн единиц вверх, если эн больше нуля или вниз, если эн меньше нуля, а при добавлении числа эм к аргументу, функция перемещается на модуль эм единиц вправо, если эм меньше нуля или влево, если эм больше нуля?

Рассмотрим первый случай. Пусть требуется построить график функции игрек равно эф от икс.. плюс эн. Заметим, что ординаты этого графика для всех значений аргумента на эн единиц больше соответствующих ординат графика игрек равно эф от икс при положительном эн и на эн единиц меньше при отрицательном эн. Следовательно, график функции игрек равно эф от икс…плюс эн можно получить параллельным переносом вдоль оси ординат графика функции игрек равно эф от икс на модуль эн единиц вверх, если эн больше нуля и на модуль эн единиц вниз, если эн меньше нуля.

Рассмотрим второй случай. Пусть требуется построить график функции игрек равно эф от суммы икс и эм. Рассмотрим функцию игрек равно эф от икс, которая в некоторой точке икс равной икс первое принимает значение игрек первое равно эф от икс первое. Очевидно, что функция игрек равно эф от суммы икс и эм примет такое же значение в точке икс второе, координата которой определяется из равенства икс второе плюс эм равно икс первое, то есть икс певрое равно икс первое минус эм. Причем рассматриваемое равенство справедливо для всех значений икс из области определения функции. Следовательно, график функции может быть получен параллельным перемещением графика функции игрек равно эф от икс вдоль оси абсцисс влево на модуль эм единиц влево, если эм больше нуля и на модуль эм вправо, если эм меньше нуля. Параллельное перемещение графика функции вдоль оси икс на эм единиц эквивалентно переносу оси игрек на столько же единиц, но в противоположную сторону.

При вращении параболы вокруг ее оси получается фигура, которую называют параболоидом. Если внутреннюю поверхность параболоида сделать зеркальной и направить на нее пучок лучей, параллельных оси симметрии параболы, то отраженные лучи соберутся в точке, которую называют фокусом. В то же время если источник света поместить в фокусе, то отраженные от зеркальной поверхности параболоида лучи окажутся параллельными и не рассеиваются.

Первое свойство позволяет получить в фокусе параболоида высокую температуру. Согласно легенде это свойство использовал древнегреческий ученый Архимед. При защите Сиракуз в войне против римлян он построил систему параболических зеркал, которая позволила сфокусировать отраженные солнечные лучи на кораблях римлян. В результате температура в фокусах параболических зеркал оказалась настолько высокой, что на кораблях вспыхнул пожар, и они сгорели. Также это свойство используется при изготовлении параболических антенн.

Второе свойство используется при изготовлении прожекторов и автомобильных фар.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: