Что такое белки. Что такое белки, какой у них состав, зачем они нужны? Основной состав белков

Белки являются сложными органическими соединениями, состоящими из аминокислот. Химический анализ показал, что белки состоят из следующих элементов:

    Углерод 50-55 %

    Водород 6-7 %

    Кислород 21-23 %

    Азот 15-17 %

    Сера 0,3-2,5 %.

В составе отдельных белков обнаружены также фосфор, йод, железо, медь и др. макро- и микровещества.

Содержание основных химических элементов может различаться в отдельных белках, исключение составляет азот, среднее количество которого характеризуется наибольшим постоянством и составляет 16 %. В связи с этим существует способ определения количества белка по входящему в его состав азоту. Зная, что 6,25 грамм белка содержит 1 грамм азота, можно найти количество белка, умножив найденное количество азота на коэффициент 6,25.

2. 4. Аминокислоты.

Аминокислоты – карбоновые кислоты альфа-углеродный атом водорода которых замещен на аминогруппу. Белки состоят из аминокислот. В настоящее время известно более 200 различных аминокислот. В организме человека их около 60, а в состав белков входят только 20 аминокислот, которые называют природными или протеиногенными. 19 из них являются альфа-аминокислотами, это означает, что аминогруппа присоединена к альфа-углеродному атому карбоновой кислоты. Общая формула этих аминокислот выглядит следующим образом.

Только аминокислота пролин не соответствует этой формуле, её относят к иминокислотам.

Химические названия аминокислот, для краткости сокращают, например, глутаминовая кислота ГЛУ, серин СЕР и т.д. для записи первичной структуры белков в последнее время стали пользоваться только однобуквенными символами.

Во всех аминокислотах есть общие группировки: -СН2, -NН2, -СООН, они придают общие химические свойства белкам, и радикалы, химическая природа которых разнообразна. Именно они определяют структурные и функциональные особенности аминокислот.

Классификации аминокислот основана на их физико-химических свойствах.

По строению радикалов:

    Циклические - гомоциклические ФЕН, ТИР, гетероциклические ТРИ, ГИС.

    Ациклические – моноаминомонокарбоновые ГЛИ, АЛА, СЕР, ЦИС, ТРЕ, МЕТ, ВАЛ, ЛЕЙ, ИЛЕЙ,НЛЕЙ, моноаминодикарбоновые АСП, ГЛУ, диаминомонокарбоновые ЛИЗ, АРГ.

По образованию в организме:

    Заменимые – могут синтезироваться в организме из веществ белковой и небелковой природы.

    Незаменимые – не могут синтезироваться в организме, поэтому должны поступать только с пищей – все циклические аминокислоты, ТРЕ, ВАЛ, ЛЕЙ, ИЛЕЙ.

Биологическое значение аминокислот:

    Входят в состав белков организма человека.

    Входят в состав пептидов организма человека.

    Из аминокислот образованы в организме многие низкомолекулярные биологически активные вещества: ГАМК, биогенные амины и т.д.

    Часть гормонов в организме – производные аминокислот (гормоны щитовидной железы, адреналин).

    Предшественники азотистых оснований, входящих в состав нуклеиновых кислот.

    Предшественники порфиринов, идущих на биосинтез гема для гемоглобина и миоглобина.

    Предшественники азотистых оснований, входящих в состав сложных липидов (холина, этаноламина).

    Участвуют в биосинтезе медиаторов в нервной системе (ацетилхолин, дофамин, серотонин, норадреналин и др.).

Свойства аминокислот:

    Хорошо растворимы в воде.

    В водном растворе существуют в виде равновесной смеси биполярного иона, катионной и анионной форм молекулы. Равновесие зависит от рН среды.

NH3-CH-COOH NH3-CH-COO NH2-CH-COO

R + ОН R R + Н

Катионная форма Биполярный ион Анионная форма

Щелочная среда рН Кислая среда

    Способны двигаться в электрическом поле, что используется для разделения аминокислот с помощью электрофореза.

    Проявляют амфотерные свойства.

    Могут играть роль буферной системы, т.к. могут реагировать как слабое основание и слабая кислота.

Как известно, белки являются необходимой и основной составной частью любого живого организма. Именно они отвечают за обмен веществ и превращения энергии, которые неразрывно связаны практически со всеми процессами жизнедеятельности. подавляющего большинства тканей и органов животных и человека, а также более 50% всех микроорганизмов, в основном состоят из белков (от 40% до 50%). При этом в растительном мире их по сравнению со средней величиной меньше, а в животном - больше. Вместе с тем химический состав белков для многих людей все еще является неизвестным. Давайте еще раз вспомним, что же находится внутри этих высокомолекулярных

Состав белка

Это вещество в среднем содержат в себе примерно 50-55% углерода, 15-17% азота, 21-23% кислорода, 0,3-2,5% серы. Кроме перечисленных основных компонентов, порой в состав белков входят элементы, удельный вес которых очень незначителен. Прежде всего это фосфор, железо, йод, медь и некоторые другие микро- и макроэлементы. Любопытно, что концентрация азота обладает наибольшим постоянством, в то время как содержание других ключевых компонентов может варьироваться. Описывая состав белка, обязательно следует отметить, что он представляет собой нерегулярный полимер, построенный из остатков которых в растворе воды при нейтральном pH в самом общем виде можно записать как NH3+CHRCOO-.

Между собой эти «кирпичики» соединяются амидной связью между карбоксильными и аминными группами. Всего в природе выявлено около тысячи различных белков. К данному классу относятся антитела, ферменты, многие гормоны и прочие активные биологические вещества. Удивительно, но при всем таком разнообразии состав белка может включать не более 30 различных из которых являются наиболее популярными. В человеческом организме их содержатся только 22, остальные же попросту не усваиваются и выводятся наружу. Восемь аминокислот из данной группы принято считать незаменимыми. Это лейцин, метионин, изолейцин, лизин, фенилаланин, триптофан, треонин и валин. Их наш организм самостоятельно синтезировать не может, а потому требуется их поступление извне.

Остальные же (таурин, аргинин, глицин, карнитин, аспарагин, гистидин, цистеин, глютамин, аланин, орнитин, тирозин, пролин, серин, цистин) он вполне может создать самостоятельно. Поэтому такие аминокислоты относят к группе заменимых. В зависимости от наличия в составе белка первой группы, а также от степени его усвоения организмом, белок делится на полноценный и неполноценный. Среднесуточная норма потребления данного вещества для человека лежит в диапазоне от 1 до 2 грамм на килограмм веса. При этом малоподвижным людям следует придерживаться нижней границы данного диапазона, а спорстменам - верхней.

Как изучают состав белка

Для исследования данных веществ в основном применяется метод гидролиза. Вызывающий интерес белок нагревают с разбавленной соляной кислотой (6-10 моль/литр) при температуре от 100 ˚С до 1100 ˚С. В результате он распадется на смесь аминокислот, из которых уже выделяют отдельные аминокислоты. В настоящее время для исследуемого белка используют бумажную, а также ионообменную хроматографию. Существует даже особые автоматические анализаторы, которые легко определяют, какие именно аминокислоты образуются в результате распада.

Химический состав белков.

3.1. Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO – . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

3.2. Элементный состав белков

Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза – длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110  С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего – хроматографию (подробнее – глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

3.3. Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты – это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу – NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

H – C  – NH 2

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: – CH 2 , – NH 2 , – COOH. Боковые же цепи (радикалы – R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO ) имеют хиральный атом C  и могут существовать в виде двух энантиомеров (оптических изомеров):

COO – COO –

NH 3 + R R NH 3 +

L -изомер D -изомер

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO  и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна – из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

GIVEQCCA SVCSLY QLENYCN

FVNQHLC GSHLVEALYLVC GERGFFYTPKA

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

N – CH – CO – N – CH – CO –

CH 2 CH 2 CH 2 CH 2

CH 2 CHOH

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани – коллагена .

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

– NH – CH – CO – – NH – CH – CO –

CH 2 OH CH 2 OPO 3 2 –

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

    Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

    Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

    Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (– SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

    Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины,креатина.

Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так

фенил-аланин служит основным источником синтеза тирозина – предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Свойства

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков – мономеров.

Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а Соответственно и молекулярная масса белков находится в пределах 10 000 – 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин – 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.

Определение молекулярной массы проводится различными методами: осмометрическим, гельфильтрационным, оптическим и др. однако наиболее точным является метод седиментации, предложенный Т. Сведбергом. Он основан на том, что при ультрацентрифугировании ускорением до 900 000 g скорость осаждения белков зависит от их молекулярной массы.

Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные – радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 – 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 – 7) подавляется диссоциация кислотных групп и белок становится катионом.

Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8 – 5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36 – 7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах – следовательно существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма. К таким системам относится рассматриваемая в гл. “ Классификация” гемоглобиновая буферная система (стр.28). Изменение рН крови более чем на 0,07 свидетельствует о развитии патологического процесса. Сдвиг рН в кислую сторону называется ацидозом, а в щелочную – алкалозом.

Важное значение для организма имеет способность белков адсорбироватьь на своей поверхности некоторые вещества и ионы (гормоны, витамины, железо, медь), которые либо плохо растворимы в воде, либо являются токсичными (билирубин, свободные жирные кислоты). Белки транспортируют их по крови к местам дальнейших превращений или обезвреживания.

Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

Обратимое осаждение белков (высаливание) предполагает выпадение белка в осадок под действием определенных веществ, после удаления которых он вновь возвращается в свое исходное (нативное) состояние. Для высаливания белков используют соли щелочных и щелочноземельных металлов (наиболее часто в практике используют сульфат натрия и аммония). Эти соли удаляют водную оболочку (вызывают обезвоживание) и снимают заряд. Между величиной водной оболочки белковых молекул и концентрацией солей существует прямая зависимость: чем меньше гидратная оболочка, тем меньше требуется солей. Так, глобулины, имеющие крупные и тяжелые молекулы и небольшую водную оболочку, выпадают в осадок при неполном насыщении раствора солями, а альбумины как более мелкие молекулы, окруженные большой водной оболочкой, – при полном насыщении.

Нативная молекула белка

Денатурированная молекула белка. Черточки обозначают связи в молекуле нативного белка, разрывающиеся при денатурации



еобратимое осаждение связано с глубокими внутримолекулярными изменениями структуры белка, что приводит в потере ими нативных свойств (растворимости, биологической активности и др.). Такой белок называется денатурированным, а процесс денатурацией . Денатурация белков происходит в желудке, где имеется сильнокислая среда (рН 0,5 – 1,5), и это способствует расщеплению белков протеолитическими ферментами. Денатурация белков положена в основу лечения отравления тяжелыми металлами, когда больному вводят per os (“через рот”) молоко или сырые яйца с тем, чтобы металлы денатурируя белки молока или яиц.

Адсорбировались на их поверхности и не действовали на белки слизистой оболочки желудка и кишечника, а также не всасывались в кровь.

Размер белковых молекул лежит в пределах 1 мкм до 1 нм и, следовательно, они являются коллоидными частицами, которые в воде образуют коллоидные растворы. Эти растворы характеризуются высокой вязкостью, способностью рассеивать лучи видимого света, не проходят сквозь полупроницаемые мембраны.

Вязкость раствора зависит от молекулярной массы и концентрации растворенного вещества. Чем выше молекулярная масса, тем раствор более вязкий. Белки как высокомолекулярные соединения образуют вязкие растворы. Например, раствор яичного белка в воде.

Вода



оллоидные частицы не проходят через полупроницаемые мембраны (целлофан, коллоидную пленку), так как их поры меньше коллоидных частиц. Непроницаемыми для белка являются все биологические мембраны. Это свойство белковых растворов широко используется в медицине и химии для очистки белковых препаратов от посторонних примесей. Такой процесс разделения называется диализом. Явление диализа лежит в основе действия аппарата “искусственная почка”, который широко используется в медицине для лечения острой почечной недостаточности.

Диализ (белые крупные кружки – молекулы белка, черные – молекулы хлористого натрия)

Минеральные вещества молока

В золе молока содержатся такие минеральные вещества, как кальций, фосфор, магний, калий, натрий, хлор, сера, кремний. Количество отдельных элементов в молоке определяется в основном генетическими факторами. Кормление и другие факторы окружающей среды оказывают на их содержание лишь незначительное влияние. Количество минеральных веществ в молоке остается постоянным даже тогда, когда в рационах отдельных элементов мало. При недостаточном поступлении минеральных веществ с кормом мобилизуются резервы организма и таким образом концентрация их в молоке поддерживается на определенном уровне. При значительном недостатке одного или нескольких элементов содержание минеральных веществ в расчете на единицу объема молока остается более или менее постоянным. Однако молочная продуктивность, а затем и общее количество минеральных веществ в молоке снижается.

Минеральные вещества

Содержится,г

Минеральные вещества

Общее количество микроэлементов в молоке составляет менее 0,15%.Содержание микроэлементов в молоке находится в тесной зависимости от наличия их в кормах.

    Структурно-механические свойства масла.

    По Ребиндеру существуют два основных типа структур.

    Первый тип – коагуляционная структура – это пространственные сетки, возникающие путем беспорядочного сцепления мельчайших частиц дисперсной фазы или микромолекул через тонкие расслойки данной среды.

    Второй тип – это кристаллизационно-конденсационная структура , образующаяся в результате непосредственного срастания кристалликов с образованием при этом поликристаллического твердого тела.

    Жировые основы маргарина относятся к коагуляционному типу структур. Консистенция и пластические свойства жировых основ маргарина в основном определяются соотношением твердой и жидкой фаз в том или ином пищевом жире. Это соотношение твердой и жидкой фаз характерно для каких-то определенных условий кристаллизации (температура, время, перемешивание). При этом важное значение имеет состав непрерывной среды и дисперсной фазы и характер размещения дисперсной фазы в непрерывной жидкой среде.

    Для некоторых видов пищевого жира при определенной температуре и условиях кристаллизации количество твердой дисперсной фазы может выйти за предел оптимального соотношения фаз, и тогда на поверхности кристаллов образуются столь тонкие пленки непрерывной жидкой среды, что они не могут мешать массовому хаотическому сращиванию кристаллов друг с другом. В этом случае мы всегда будем иметь наибольшую твердость жировой основы, крошливую консистенцию и наихудшие пластические свойства.

    Если при комнатной температуре пленки жидкой непрерывной среды являются оптимальными по толщине, т.е. такими, которые не создают условий для сращивания кристаллов при хранении, при механическом или термическом воздействии на систему, то в этом идеальном случае мы всегда будем получать упрочненные коагуляционные структуры, которые и определяют наилучшие пластические свойства жировых основ.

    Чтобы получать упрочненные коагуляционные структуры, обладающие наилучшими пластическими свойствами, за рубежом часто вводят в рецептуру жировой основы два вида саломаса с температурой плавления 32°С и 42°С. При этом вводится довольно значительное количество жидких растительных масел. Указанное, с одной стороны, создает в жировой основе наилучшие соотношения твердой и жидкой фаз, обеспечивая консистенцию, сходную со сливочным маслом, а с другой стороны, создает условия для постоянства консистенции маргарина в довольно большом интервале температур. Наряду с этим, введение в жировую основу высокоплавких саломасов находится в противоречии с требованиями физиологов к составу пищевых жиров.

    Прежде всего, следует отметить, что только наличие высокоэффективных эмульгаторов-стабилизаторов позволило создать современную технологию в производстве маргарина и обеспечить выработку пищевого жирового продукта высокого качества. Поверхностно-активные добавки обеспечивают получение тонкодисперсной эмульсии в прочную связь частиц дисперсной фазы с непрерывной средой (твердым при комнатной температуре жиром). Основной вопрос в производстве маргарина – это влияние поверхностно-активных добавок на структурно-механические свойства маргарина, и в частности на способность к солюбилизации.

    Адсорбционный слой эмульгатора повышает устойчивость эмульсии, в особенности в тех случаях, когда этот слой структурируется, образуя пленку поверхностного геля с сильно повышенной вязкостью и прочностью.

    Эти свойства имеют особое значение для производства маргарина, поскольку готовый продукт представляет собой эмульсию мельчайших частиц жидкой фазы, равномерно размещенных в непрерывной среде твердой фазы при комнатной температуре.

    С проблемой прочности эмульсий тесно связан вопрос о типе образующихся с данным эмульгатором эмульсий. Существует возможность образования двух типов. Значение соотношения объемов фаз для определенного типа образующейся эмульсии объясняется тем, что коалесценция и расслоение эмульсии данного типа происходят тем интенсивнее, чем меньше объем дисперсионной среды и чем больше – дисперсной фазы. Если эмульгатор обеспечивает устойчивую эмульсию только одного типа, то соотношение объемов перестает иметь решающее значение в определении типа эмульсии. Инверсия зависит не только от соотношения объемов фаз, но и от концентрации и химической природы эмульгатора.

Эмульгаторы должны обладать следующими свойствами:

Уменьшать поверхностное натяжение;
- достаточно быстро адсорбироваться на поверхности раздела фаз, препятствуя слиянию капель;
- иметь специфическую молекулярную структуру с полярными и неполярными группами;
- влиять на вязкость эмульсии.

Эффективность действия эмульгатора является специфическим свойством, зависящим от его природы, типа эмульгируемых веществ, температуры, рН среды, концентрации, времени эмульгирования и т.д.

Эффективность действия и природа эмульгатора определяют тип эмульсии.

Гидрофильные эмульгаторы, лучше растворимые в воде, чем в углеводородах, способствуют образованию эмульсий типа масло – вода, а гидрофобные, лучше растворимые в углеводородах, – эмульсий типа вода – масло. Соотношение размеров полярной и неполярной частей молекул эмульгатора характеризуется специальным показателем – гидрофильно-липофильный баланс. Если ГЛБ эмульгатора составляет 3-6, образуется эмульсия вода – масло, при значении ГЛБ 8-13 образуется преимущественно эмульсия типа масло – вода.

Маргарин представляет собой переохлажденную эмульсию типа вода в масле. При этом не исключена возможность образования эмульсии смешанного типа с преобладанием эмульсии вода – масло.

Основные функции эмульгаторов:

Создание устойчивой высокодисперсной эмульсии;
- стабилизация и предотвращение отделения влаги и жира в готовом продукте;
- обеспечение стабильности при хранении;
- обеспечение антиразбрызгивающей способности при жарке;
- обеспечение пластичности;
- обеспечение создания устойчивой формы кристаллической решетки в процессе структурообразования;
- обеспечение заданных функциональных свойств готового продукта в зависимости от области использования маргарина.

В Украине на протяжении многих лет использовались эмульгаторы, производимые в России, и собственного производства, вырабатываемые на полупромышленных производствах. К ним относятся эмульгаторы:

Т-1 – продукт глицеролиза говяжьего жира или саломаса;
- Т-2 – продукт полимеризации глицерина, этерифицированный стеариновой кислотой;
- Т-Ф – смесь эмульгатора Т-1 и пищевого фосфатидного концентрата в соотношении 2:1;
- ПМД – пищевые монодиглицериды;
- КЭ – комбинированный эмульгатор – смесь ПМД и фосфатидного концентрата в соотношении 3:1.

Широкая гамма эмульгаторов Нижегородского завода – различные виды дистиллированных моноглицеридов. В настоящее время в Нижнем Новгороде освоено производство серии новых эмульгаторов на основе лецитина. Это лецитины стандартные, лецитины фракционированные – фосфадитилхолин и фосфадитилсерин, а также гидролизованные лецитины.

В последние годы в Украине преимущественно используются эмульгаторы различных модификаций серии Dimodan, Palsgaard (на некоторых предприятиях Квест).

В разные периоды преимущество в спросе на эти два вида эмульгаторов переходило от одного к другому. Можно сказать, что здесь имеет место конкуренция качество – цена.

В зависимости от жирности маргарина и сферы его применения используют эмульгаторы Dimodan PVP (Dimodan HP), Dimodan ОТ (Dimodan S-T PEL/B), Dimodan СР. Для маргаринов жирностью ниже 40%, которые в настоящее время пользуются спросом у населения, используют дополнительно (кроме Dimodan ОТ, или Dimodan СР., или Dimodan LS) эфиры полиглицерина и рицинолевой кислоты – Grinsted PGPR90.

При производстве низкожирных маргаринов, особенно с содержанием жира 25% и ниже, используют стабилизирующие системы – гидроколлоиды (альгинаты, пектины и др.).

Следует отметить, что фирмы-производители дают рекомендации по применению различных видов эмульгаторов и стабилизирующих систем в зависимости от назначения маргаринов. Соблюдение этих рекомендаций позволяет получить продукцию высокого качества

Мышечные белки

Мясо птицы содержит примерно 20-23% белков. Мышечные белки по их растворимости можно разделить на три группы: миофибриллярные, саркоплазматические и белки стромы.

Миофибриллярные , или солерастворимые белки нерастворимы в воде, но большинство растворяется в растворах поваренной соли концентрацией более 1%. Эта группа состоит примерно из 20 отдельных белков, входящих в состав миофибрилл сократительной мышцы. Миофибриллярные белки могут быть разделены на три группы в зависимости от выполняемой функции: сократительные, которые ответственны за мышечные сокращения, регуляторные, участвующие в управлении процессом сокращения, и цитоскелетные, скрепляющие миофибриллы и способствующие сохранению их структурной целостности.

Сократительные белки миозин и актин оказывают большое влияние на функциональность мышечного белка. Поскольку в окоченевшей мышце актин и миозин находятся в виде актомиозинового комплекса, изменяется функциональность миозина как в эмульгированных, так и в формованных продуктах из мяса птицы. Свойства продуктов зависят также от общего соотношения актина и миозина и соотношения миозина и актина в свободном состоянии. Саркоплазматические белки и белки стромы, в свою очередь, влияют на функциональные свойства миофибриллярных белков.

Саркоплазматические белки растворимы в воде или в растворах с малой ионной силой (

Белки стромы , часто называемые белками соединительной ткани, служат каркасом, поддерживающим структуру мышцы. Основным белком стромы является коллаген. Эластин и ретикулин составляют небольшую часть стромы. Все эти белки нерастворимы в воде и солевых растворах. Нежность мяса, как правило, уменьшается с увеличением возраста животных благодаря образованию поперечных связей и другим изменениям коллагена.

Кровь и её фракции

Цельную кровь применяют как основное сырьё для производства колбас, зельцев, консервов и других продуктов питания, а также в качестве аддитива, придающего традиционный цвет изделиям при использовании в них белковых препаратов (0,6-1,0%); с этой же целью применяют препарат гемоглобина или смесь форменных элементов после гидратации в воде (1:1).

По сравнению с другими видами белоксодержащего сырья цельная кровь используется недостаточной широко вследствие наличия специфических цвета и вкуса, модифицирующих органолептические характеристики готовых изделий. В настоящее время ведутся исследования по осветлению крови, однако по ряду причин предложенные способы не нашли практического применения в промышленности. Функционально-технологические свойства крови и её фракций (плазмы, сыворотки) в первую очередь зависят от их белкового состава. Цельная кровь содержит около 150 протеинов с различными физико-химическими свойствами, преобладающими из которых являются белки форменных элементов, альбумины, глобулины и фибриноген. В связи с этим на базе цельной крови целесообразно готовить эмульсии, предназначенные для введения в рецептуры мясопродуктов и обеспечивающие повышение стабильности мясных систем, пищевой ценности и выхода, улучшение органолептических показателей и структурно-механических свойств.

В качестве белкового препарата наиболее целесообразно применять соевый изолят либо казеинат натрия.

Уровень введения эмульсий, приготовленных на основе цельной крови, в мясные системы может составлять до 30-40% к массе основного сырья.

Белки плазмы крови обладают уникальным комплексом ФТС. Альбумины легко взаимодействуют с другими белками, могут быть связаны с липидами и углеводами, имеют высокую водосвязывающую и пенообразующую способность.

Глобулины - хорошие эмульгаторы.

Фибриноген - имеет выраженную гелеобразующую способность, переходя в фибрин под воздействием ряда факторов (сдвиг рН к изоточке, введение ионов Са++ в плазму) и образуя пространственный каркас.

смесей Эти свойства фибриногена можно использовать при получении многокомпонентных белоксодержащих, включающих ПК, гелеподобных текстуратов, в процессе вторичного структурообразования мясных эмульсий при производстве вареных колбасных изделий.

Все белки плазмы характеризуются хорошей растворимостью, и как следствие - высокой водосвязывающей и эмульгирующей способностью, способны образовывать гели при нагревании. Введение поваренной соли оказывает отрицательное влияние на стабильность эмульсий на базе плазмы крови при рН 7,0. Важнейшим свойством плазмы является её способность к образованию гелей при тепловой обработке, причем их прочность и уровень водосвязывающей способности зависит от концентрации белков в системе, величины рН, присутствия солей, температуры и продолжительности нагрева.

Введение в плазму неплазменных белков (яичный альбумин, соевый изолят, казеинат натрия) существенно увеличивает как прочность гелей, так и их водо- и жиропоглощающую способность после термообработки.

В зависимости от состояния плазмы крови и условий первичной обработки, состав и функционально-технологические свойства её и, соответственно, область использования могут изменяться.

Систематизация имеющихся в настоящее время данных по переработке ПК позволяет оценить современные подходы к реализации биологического и функционально-технологического потенциала белкового компонента ПК при производстве пищевых продуктов.

Схема дает представление о состоянии, способах обработки, составе и свойствах белковых препаратов, получаемых на основе ПК, определяет области их практического использования, причем полифункциональность целевого назначения ПК отражена в формируемых при том или ином способе обработки ФТС.

Необходимо отметить, что уровень отдельных показателей ФТС, приведенных в Таблице 13 и служащих для расшифровки условных обозначений, принятых в схеме, является относительным в связи с тем, что фактическая величина каждой характеристики решающим образом зависит от концентрации белка, значения рН в системе, температуры среды, ионной силы и ряда других факторов.

Анализ классификационной схемы показывает, что одним из путей технологического использования плазмы крови является её применение в жидком стабилизированном виде (а также после охлаждения и замораживания) с относительно невысоким содержанием белка и сохраненными нативными ФТС.

В этом случае белки ПК характеризуются высоким уровнем ВСС и эмульгирования, что обусловлено наличием в ней водорастворимых белков, способных образовывать гели при нагреве. Совокупность этих свойств позволяет широко использовать плазму не только как компонент, балансирующий общий химический состав готовых изделий, но и как функциональную добавку при производстве эмульгированных мясопродуктов с высоким конечным влагосодержанием: вареных колбас, сосисок, сарделек, рубленых полуфабрикатов, фаршевых консервов, ветчинных изделий. Наиболее рациональным является введение в рецептуры 10% плазмы взамен 3% говядины или 2% свинины; введение 20% ПК вместо воды при куттеровании обеспечивает улучшение органолептических, структурно-механических показателей и повышение выхода готовой продукции на 0,3-0,5%. Прекрасный эффект дает применение плазмы крови в качестве среды для гидратации белковых препаратов (3-4 частей ПК на 1 часть белкового препарата).

Незаменима ПК при изготовлении белково-жировых эмульсий, связующих, многокомпонентных белковых систем с заданным составом и функционально-технологическими свойствами, структурированных белковых препаратов.

Концентрирование ПК методами сушки, ультрафильтрации и криоконцентрирования, позволяя существенно повысить содержание белка, приводит к некоторой модификации ФТС препарата.

Особенно существенное влияние на степень изменения ФТС оказывает сушка плазмы, в то время как сухой концентрат ПК, подвергнутый ультрафильтрации, имеет весьма высокие функциональные свойства.

Полученные данными методами концентраты успешно применяют при производстве мясопродуктов наряду с жидкой ПК.

Американские специалисты считают, что плазмой" крови крупного рогатого скота, благодаря её ФТС, можно успешно заменять яичный белок.

Денатурационно-коагуляционное осаждение, обеспечивая совмещение процессов термотропного структурирования, флокуляции (осаждения) и концентрирования белков ПК, дает возможность получать препараты с относительно высокой концентрацией белка и неординарными ФТС, что позволяет использовать их в рецептурах полукопченых, копченозапеченых, ливерных колбас, паштетных консервов и полуфабрикатов, имеющих ограниченное конечное влагосодержание и высокую жиропоглотительную способность. К этой группе препаратов относят: "осажденный белок плазмы", "белковые плазменные преципитаты", ливексы, "плазменный сыр", гранулированную ПК.

Применение данных видов препаратов плазмы крови в практике мясного производства весьма ограничено.

Структурирование плазмы крови путем рекальцинирования существенно расширяет возможности её технологического использования. Перевод ПК и многокомпонентных систем на её основе в гель-форму позволяет получать структурные матрицы, имитирующие природные биообъекты по внешнему виду, составу и свойствам, создает предпосылки к регулированию ФТС, обеспечивает вовлечение в процесс производства низкосортного сырья, дает возможность с новых позиций подойти к решению вопроса разработки новых видов пищевых продуктов. Особенно эффективно комплексное использование ПК и белковых препаратов (соевые изоляты, казеинат натрия и т. п.).Структурированные формы ПК применяют при производстве вареных колбас, рубленых полуфабрикатов, ветчины в оболочке, полукопченых и ливерных колбас, паштетов, фаршевых консервов, текстурированных наполнителей рецептур, аналогов мясопродуктов.

СОЗРЕВАНИЕ МЯСА

Вопрос «созревания мяса» до сего времени не получил окончательного освещения. Из наблюдений практиков известно, что после прекращения жизни животного в мясе происходят физико-химические изменения, характеризующиеся окоченением, затем расслаблением (размягчением) мышечных волокон. В результате мясо приобретает некоторый аромат и лучше поддается кулинарной обработке. Пищевые достоинства его повышаются. Эти изменения в мягких тканях туши получили название «созревание» («вызревание») или «ферментация мяса».

Для объяснения процесса созревания мяса заслуживает большого внимания учение Мейергофа, Эмбдена, Палладина и Абдергальдена о динамике и обмене углеводов в мышцах при жизни животного.

Мейергоф показал, что содержащийся в мышце гликоген расходуется на образование молочной кислоты при сокращении мышцы. Во время расслабления
(отдыха) мышцы, благодаря поступлению кислорода, из молочной кислоты снова синтезируется гликоген

Люндсград показал, что креатинофосфорная кислота находится в мышечных клетках и при сокращении их расщепляется на креатин и фосфорную кислоту (по
Палладину), которая соединяется с гексозой (глюкозой). Аденозинофосфорная кислота, содержащаяся в мышцах, также расщепляется с образованием аденозина и фосфорной кислоты, которая дри соединении с гексозой (глюкозой) способствует образованию молочной кислоты (Эмбден и Цимммерман).

Мясо только что убитого животного (парное мясо)- плотной консистенции, без выраженного приятного специфического запаха, при варке дает мутноватый неароматный бульон и не обладает высокими вкусовыми качествами. Более того, в первые часы после убоя животного мясо окоченевает и становится жестким.
Спустя 24-72 ч после убоя животного (в зависимости от температуры среды, аэрации и других факторов) мясо приобретает новые качественные показатели: исчезает его жесткость, оно приобретает сочность и специфический приятный запах, на поверхности туши образуется плотная пленка (корочка подсыхания), при варке дает прозрачный ароматный бульон, становится нежным и т. д.
Происходящие в мясе процессы и изменения, в результате которых оно приобретает желательные качественные показатели, принято называть созреванием мяса.

Созревание мяса представляет собой совокупность сложных биохимических процессов в мышечной ткани и изменений физико-коллоидной структуры белка, протекающих под действием его собственных ферментов.

Процессы, происходящие в мышечной ткани после убоя животного, можно условно подразделить на три следующие фазы: послеубойное окоченение, созревание и автолиз.

Послеубойное окоченение в туше развивается в первые часы после убоя животного При этом мышцы становятся упругими и слегка укорачиваются Это значительно увеличивает их жесткость и сопротивление на разрезе.
Способность такого мяса к набуханию очень низкая. При температуре 15-20"С полное окоченение происходит через 3-5 ч после убоя животного, а при температуре 0-2°С-через 18-20 ч.

Процесс послеубойного окоченения сопровождается некоторым повышением температуры в туше в результате выделения тепла, которое образуется от протекающих в тканях химических реакций. Окоченение мышечной ткани, наблюдающееся в первые часы и сутки после убоя животных, обусловлено образованием из белков актина и миозина нерастворимого актомиозинового комплекса. Предпосылкой его образования являются отсутствие аденозинтрифосфорной кислоты (АТФ), кислая среда мяса и накопление в нем молочной кислоты. Биохимические изменения в мясе создают эти предпосылки.
Уменьшение и полное исчезновение АТФ связано с ее распадом в результате ферментативного действия миозина Распад АТФ до аденозиндифосфорной (АДФ, аденозинмонофосфорной (АМФ) и фосфорной кислот сам по себе приводит к появлению кислой среды в мясе. Более того, уже в этой фазе начинается распад мышечного гликогена, что приводит к накоплению молочной кислоты, так же способствующей образованию в нем кислой среды.

Кислая среда, которая является закономерным явлением распада АТФ и началом необратимого процесса гликолиза (распада мышечного гликогена), усиливает мышечное окоченение. Замечено, что мышцы животных, погибших при явлениях судорог, окоченевают быстрее. Окоченение без накопления молочной кислоты характеризуется слабым мышечным напряжением и быстрым разрешением процесса.

Однако уже задолго до завершения фазы окоченения в мясе развиваются процессы, связанные с фазами его собственного созревания и аутолиза.
Ведущими для них являются два процесса - интенсивный распад мышечного гликогена, приводящий к резкому сдвигу величины рН мяса в кислую сторону, а также некоторые изменения химического состава и физико-коллоидной структуры белков.

В связи с тем что мышцы мяса кислорода не получают и окислительные процессы в них заторможены, в мясе накапливаются избытки молочной и фосфорной кислоты. Так, например, при мышечном утомлении организма (при его жизни) достигается максимум 0,25% молочной кислоты, а при посмертном окоченении ее накопляется до 0,82%. Активная реакция среды (рН) при этом изменяется от 7,26 до 6,02. От накопления молочной кислоты наступает быстрое сокращение (окоченение) мускулатуры, сопровождающееся коагуляцией белка (Саксль). При этом актомиозин теряет свою растворимость, белки стабилизируются, а кальций выпадает из коллоидов белка и переходит в раствор (мясной сок). Вследствие избыточного содержания молочной кислоты вначале наступает набухание коллоидоанизотропного вещества (темного диска) мышечных волокон (оно сопровождается укорочением- окоченением мышц); затем по мере увеличения концентрации молочной кислоты и коагуляции белка происходит размягчение этого вещества. Свернувшиеся белки теряют свои коллоидные свойства, становятся неспособными связывать (удерживать) воду и в известной степени лишаются своей дисперсной среды (воды): вместо первоначального разбухания наступает сморщивание (съеживание) коллоидов клеток, и мышцы становятся мягкими (разрешение окоченения).

В результате накопления молочной, фосфорной и других кислот в мясе увеличивается концентрация водородных ионов, вследствие чего к концу суток рН снижается до 5,8-5,7 (и даже ниже).

В кислой среде при распаде АТФ, АДФ, АМФ и фосфорной кислоты происходит частичное накопление неорганического фосфора. Резко кислая среда и наличие неорганического фосфора считается причиной диссоциации актомиозинового комплекса на актин и миозин. Распад этого комплекса снимает явления окоченения и жесткости мяса. Следовательно, фазу окоченения от других фаз обособить нельзя и ее необходимо считать одним из этапов процесса созревания мяса.

Схему биохимических изменений в процессе созревания мяса можно представить следующим образом.

Кислая среда сама по себе действует бактериостатически и даже бактерицидно, а поэтому при сдвиге рН в кислую сторону в мясе создаются неблагоприятные условия для развития микроорганизмов.

Наконец, кислая среда приводит к некоторым изменениям химического состава и физико-коллоидной структуры белков. Она изменяет проницаемость мышечных оболочек и степень дисперсности белков. Кислоты вступают во взаимодействие с протеинатами кальция и кальций отщепляют от белков.
Переход кальция в экстракт ведет к уменьшению дисперсности белков, в результате чего теряется часть гидратно связанной воды. Поэтому из созревшего мяса центрифугированием можно частично отделить мясной сок.

Высвободившаяся гидратносвязанная вода, воздействие про-теолитических ферментов и кислая среда создают условия разрыхления сарколеммы мышечных волокон, и в первую очередь разрыхления и набухания коллагена. Это в значительной степени способствует изменению консистенции мяса и более выраженной его сочности. Очевидно, с набуханием коллагена, а затем частичной отдачей влаги с поверхности туши в окружающую среду следует связывать образование на ее поверхности корочки подсыхания.

Фаза собственного созревания во многом определяет интенсивность течения физико-коллоидных процессов и микроструктурных изменений мышечных волокон, которые бывают в фазе автолиза. Автолиз при созревании мяса понижают в широком смысле слова и связывают его не только с распадом белков, но и с процессом распада любых составных частей клеток. В связи с этим процессы, происходящие в фазе собственного созревания, невозможно отделить или обособить от таковых при автолизе. Тем не менее в результате комплекса причин (действие протеолитических ферментов, резко кислая среда, продукты автолитического распада небелковых веществ и др.) происходит автолитический распад мышечных волокон на отдельные сегменты.

Созревание мяса совершается в течение 24-72 часов при температуре +4°.
Однако не всегда удастся выдерживать мясо при +4°. Иногда приходится хранить его в обычных условиях (не в остывочных) при температуре +6-8° и выше; при повышенной температуре процессы посмертного окоченения и разрешения мышц протекают быстрее. Скорость созревания мяса зависит также от вида и состояния здоровья убитого животного, его упитанности и возраста; но эти вопросы требуют дальнейшего наблюдения и изучения.

При созревании мяса происходит расщепление некоторых нуклеидов
(азотистых экстрактивных веществ). Образуются летучие вещества, эфиры и альдегиды, придающие аромат мясу. Появляются адениловая и инозиновая кислоты, аденин, ксантин, гипоксантин, от которых и зависят вкусовые качества мяса. Меняется реакция среды мяса в сторону кислотности (рН 6,2-
5,8). Это способствует набуханию коллоидов протоплазмы, благодаря чему мясо приобретает мягкость, нежность и хорошо поддается кулинарной обработке.
Мясо такого качества получается через 1-3 суток его хранения при температуре от 4 до 12° (в зависимости от возможностей предприятий).

На первом этапе этого процесса обнаруживается сегментация в отдельных мышечных волокнах при сохранении эндомизия волокон. При этом в сегментах сохраняется структура ядер, поперечная и продольная исчерченность.

На втором этапе сегментации подвергаются большинство мышечных волокон.
Как и на первом этапе, эндомизий волокон, а в сегментах структура ядер, поперечная и продольная исчерченность продолжают сохраняться. Наконец, на третьем этапе (фаза глубокого автолиза) обнаруживается распад сегментов на миофибриллы, а миофибрилл на саркомеры.

Саркомеры при микроскопии срезов, сделанных из такого Мяса, просматриваются в виде зернистой массы, заключенной в эндомизий.

Морфологические и микроструктурные изменения в тканях также являются причиной размягчения и разрыхления мяса в процессе его созревания, благодаря чему пищеварительные соки более свободно проникают к саркоплазме, что улучшает ее переваримость. Необходимо отметить, что соединительнотканные белки при созревании мяса почти не подвергаются протеолитическим процессам. Поэтому при равных условиях созревания нежность различных отрубов мяса одного и того же животного, а также одинаковых отрубов различных животных оказывается неодинаковой; нежность мяса, содержащего много соединительной ткани, невелика, а мясо молодых животных нежнее, чем старых.

В результате комплекса автолитических превращений различных компонентов мяса при его созревании образуются и накапливаются вещества, обусловливающие аромат и вкус созревшего мяса. Определенный вкус и аромат придают созревшему мясу азотсодержащие экстрактивные вещества - гипоксантин, креатин и креатинин, образующиеся при распаде АТФ, а также накапливающиеся свободные аминокислоты (глутаминовая кислота, аргинин, треонин, фенилаланин и др.). В образовании букета вкуса и аромата, по- видимому, участвуют пировиноградная и молочная кислоты.

И. А. Смородинцев высказывал предположение, что вкус и аромат зависят от накопления в созревшем мясе легкорастворимых и летучих веществ типа эфиров, альдегидов и кетонов. В дальнейшем в ряде исследований показано, что ароматические свойства созревшего мяса улучшаются по мере накопления в нем общего количества летучих редуцирующих веществ. В настоящее время при помощи газовой хроматографии и масс-спектрометрического анализа установлено, что к соединениям, обусловливающим запах вареного мяса, относятся ацетальдегид, ацетон, мртилэтилкетон, метанол, метилмеркаптан, диметилсульфид, этилмеркаптан и др.

При повышении температуры (до 30 °С), а также при длительной выдержке мяса (свыше 20-26 суток) в условиях низких плюсовых температур ферментативный процесс созревания заходит так глубоко, что в мясе заметно увеличивается количество продуктов распада белков в виде малых пептидов и свободных аминокислот. На этой стадии мясо приобретает коричневую окраску, в нем увеличивается количество аминного и аммиачного азота, происходит заметный гидролитический распад жиров, что резко снижает его товарные и пищевые качества.

Биохимические процессы, происходящие при созревании в мясе больных животных, отличаются от биохимических процессов в мясе здоровых животных.
При лихорадке и переутомлении энергетический процесс в организме повышен.
Окислительные процессы в тканях усилены. Изменение углеводного обмена при болезнях и переутомлении характеризуется быстрой убылью гликогена в мускулатуре. Поэтому почти при всяком патологическом процессе в организме животного содержание гликогена в мышцах сокращается. Поскольку гликогена в мясе больных животных меньше, чем в мясе здоровых, то и количество продуктов распада гликогена (глюкозы, молочной кислоты и др.) в мясе больных животных незначительное.

Кроме того, при тяжело протекающих заболеваниях еще при жизни животного в его мускулатуре накапливаются промежуточные и конечные продукты белкового метаболизма. В этих случаях уже в первые часы после убоя животного в мясе обнаруживается повышенное количество аминного и аммиачного азота.

Незначительное накопление кислот и повышенное содержание полипептидов, аминокислот и аммиака являются причиной меньшего снижения показателя концентрации водородных ионов при созревании мяса больных животных. Этот фактор влияет на активность ферментов мяса. В большинстве случаев концентрация водородных ионов, устанавливающаяся в результате созревания мяса больных животных, более благоприятна для действия пептидаз и протеаз.

В итоге накопление в мясе больных животных экстрактивных азотистых веществ и отсутствие резкого сдвига величины рН в кислую сторону считаются условиями, благоприятными для развития микроорганизмов.

Изменения, происходящие в мясе больных животных, по-иному влияют и на характер физико-коллоидной структуры мяса. Меньшая кислотность вызывает незначительное выпадение солей кальция, что, в свою очередь, является причиной меньшего изменения степени дисперсности белков и других изменений, характерных для них при нормальном созревании мяса. Сравнительно высокий показатель рН, накопление продуктов распада белков и благоприятные условия для развития микроорганизмов предопределяют меньшую стойкость мяса больных животных при хранении. Перечисленные признаки свойственны мясу каждого тяжелобольного животного; они являются причиной известной однотипности в изменении физико-химических показателей мяса, полученного от животных, убитых с течением патологического процесса, независимо от природы заболевания. Это положение не отрицает, специфических изменений в составе мяса при отдельных заболеваниях, но дает основание говорить об общих закономерностях созревания мяса при патологии в животном организме.

Соединениями, характеризующимися большой молекулярной массой. В состав всех известных белков ... постоянной свою форму и химический состав , несмотря на непрерывное их...

  • Химический состав и физические свойства спермы

    Доклад >> Медицина, здоровье

    Химический состав и физические свойства спермы Сперма – смесь... , А), макро и микроэлементы. Химический состав спермы: 1)вода- 75% 2) сухое вещество- 25%: -белки - 85% -Липиды...


  • Минеральные вещества

    К группе макроэлементов относятся такие, содержание которых в сухой субстанции варьирует от nּ10 -2 до nּ10 %. Это С, О, Н, N, S и Р, входящие в молекулярный состав основных веществ и Ca, Na, Cl, К, Mg, входящие в состав опорных тканей, крови, лимфы и др. тканей.

    К группе ультрамикроэлементов относятся элементы, содержание которых ниже nּ10 -5 % (Sb, Нg, Вi, Рb и др.).

    Установлено, что большинство элементов являются биогенными, имеющими огромное значение для обеспечения нормального развития биохимических жизненных процессов, причем наиболее важные биогенные элементы входят в IV (С); V (W, P) и VI (O, S) группы таблицы Менделеева. Элементы VII (Сl, J, Мn) и VIII (Fe, Со) группы участвуют в образовании веществ с высокой биологической ценностью.

    Микроэлементный состав сырья зависит от среды обитания или произрастания. В зависимости от концентрации отдельных элементов в окружающей среде и в пище, доступности их, а также от избирательной способности отдельных видов организмов изменяется и степень использования отдельных элементов при процессах ассимиляции.

    Белки

    Из органических веществ, входящих в состав живых организмов, наиболее важным в биологическом отношении и наиболее сложными по структуре являются белки. Почти все проявления жизни (пищеварение, раздражительность, сократимость, рост и размножение, движение, обмен веществ и др.) связаны с белковыми веществами. Белки играют важную роль как в построении живой материи, так и в осуществлении процессов ее жизнедеятельности.

    Специфические катализаторы белковой природы - ферменты - ускоряют химические реакции, протекающие в организме. Различные соединения белковой природы осуществляют транспортную функцию, снабжая организм кислородом и питательными веществами. Распад 1 г белка до конечных продуктов обеспечивает организм энергией 4,27 ккал.

    Выделенные из органов и тканей белки при нагревании дают осадок белого цвета и обладают теми же физическими свойствами, как белок куриного яйца. Поэтому их стали называть белками. Синонимом слова "белок" является слово «протеин» (от греческого "протеус" - первый, главный).

    Белки - это высокомолекулярные полимеры различных аминокислот. На рис. 1 представлены формулы различных аминокислот.

    Рис.1. Формулы некоторых аминокислот.

    Аминокислоты подразделяются на 2 большие группы: заменимые и незаменимые. Большинство аминокислот образуется в организме животных и человека в результате гидролиза белков пищи и биосинтеза. Но как минимум, восемь аминокислот не синтезируются в организме. Это валин, лейцин, изолейцин, треонин, лизин, фенилаланин, триптофан и метионин, называемые незаменимыми. Белки, в которых отсутствует одна или несколько этих аминокислот, называют биологически неполноценными. Животные белки, в том числе белки гидробионтов, содержат все незаменимые аминокислоты.

    Аминокислоты, входящие в состав белка, соединяются между собой пептидными связями, образующимися между аминной группой одной аминокислоты и карбоксильной группой другой. Механизм этого процесса показан на рис. 2.

    Рис. 2. Образование первичной структуры белка.

    Образующиеся полипептиды являются основой всех белков, а заложенная в них определенная последовательность аминокислот характеризует первичную структуру белка.

    Таким образом, поскольку макромолекулы белка построены из многих сотен аминокислот, в природе существует безграничное количество их изомеров, и каждый вид живых существ может иметь свой только ему присущий белок.

    Полипептидные цепи в свою очередь могут соединяться, образуя вторичные структуры белка, главным образом за счет связей, возникающих между различными группами полипептидов. Это схематично показано на рис. 3.

    а) образование водородных связей

    б) образование a-спирали из полипептидной цепочки

    Рис. 3. Схема образования вторичной структуры белка.

    Пространственное расположение полипептидных цепей молекулы белка определяет третичную структуру белковой молекулы.

    Собственно белки - высокомолекулярные соединения сложной структуры, различаются как по физиологическим функциям, так и по химическим свойствам. Белки пищевого сырья находятся преимущественно в коллоидном состоянии – в виде гелей и золей, что предопределяет неустойчивость и изменчивость свойств (денатурацию) белковых веществ при изменении условий среды.

    При подкислении белковых растворов до рН 4,5-5,0 (например, при мариновании) белки утрачивают растворимость и осаждаются (коагулируют). Многие белки утрачивают растворимость при насыщении растворов хлористым натрием (при посоле). В частности, основные мышечные белки, хорошо растворимые в растворах хлористого натрия концентрацией 7,5-10 %, при повышении его концентрации до 15 % осаждаются (высаливаются). При нагревании (во время варки, обжаривания, пропекания) белки свертываются (коагулируют). Термическая денатурация белков начинается с 28-35 о С. Денатурация белков имеет место и при обезвоживании (дегидратации) их систем (при сушке и замораживании).

    При осаждении (высаливании, коагуляции) белков нарушается их связь с водой.

    В результате пространственного трехмерного строения "на поверхности" белковой молекулы оказываются химически активные группы – NН 2 ; -COOH; - ОН. В водном растворе эти группы находятся в ионизированном состоянии с зарядами различного знака. Белковая молекула приобретает соответствующий знак и величину заряда в зависимости от соотношения положительно и отрицательно заряженных групп. Заряд белковой молекулы зависит от ее состояния. Всякое изменение структуры белковой молекулы приводит к изменению ее заряда, в частности, потеря заряда приводит к денатурации белка. Наличием этих зарядов обуславливаются также гидратные свойства белков. Например, к положительно заряженной белковой молекуле присоединяются молекулы воды своими отрицательно заряженными концами, и образуется структура, центром которой является белковая молекула, а вокруг нее находится мономолекулярная оболочка воды. Так как все отрицательно заряженные концы молекул воды обращены к белковой молекуле, то на поверхности структуры белок - вода сохраняется тот же заряд. К этой поверхности в свою очередь присоединяются новые группы молекул воды и т.д. При этом вокруг каждой молекулы белка образуется электростатически связанный гидратный слой. Сила связи с белком уменьшается пропорционально квадрату расстояния от центра, т.е. от белковой молекулы, и на достаточно большом в масштабах размеров молекулы расстоянии эта связь настолько мала, что собственное тепловое движение молекул препятствует действию электростатических сил. Это и ограничивает количество воды, удерживаемой поверхностью белка.

    По существующим воззрениям белковую ткань можно рассматривать как коллоидное и капиллярно-пористое коллоидное тело очень сложного строения, основу которого составляет структурная сетка из находящихся в набухшем состоянии белков, заключающая вязкие растворы, содержащие растворимые белки и другие азотистые и минеральные вещества, которые обладают гидрофильными свойствами. При этом часть воды, входящей в состав мышечной ткани, прочно удерживается белками структурной сетки, а также молекулами растворенных белков и других гидрофильных веществ.

    Наряду с водой, удерживаемой силовым полем на внешней и внутренней поверхности белковых частиц, в мышечной ткани присутствует вода, удерживаемая осмотически и силами механической связи (капиллярноудерживаемая вода). Эта вода находится в жидкостях (растворах), содержащих различные азотистые и органические вещества и минеральные соли, заключенные в замкнутых ячейках (микропорах) внутри белковых структур и пронизывающих последние микро- и макрокапиллярах. По имеющимся в литературе данным, 1 г белка при гидратации связывает в среднем 0,3 г воды.

    Все методы обработки, технологические режимы направлены на изменение воды в тканях сырья (насыщение ее солью, превращение в лед, нагрев до температуры, близкой к температуре кипения, испарение). Изменение внутренней энергии воды приводит к нарушению равновесного состояния между белком и водой, образующей гидратную оболочку. Белковая молекула реагирует на это перестройкой собственной структуры и соответственно изменением величины заряда. Когда эти изменения завершаются резким снижением или полным исчезновением заряда наступает денатурация белка.

    В зависимости от интенсивности и продолжительности внешнего воздействия денатурация белка может быть или обратимой, иди частично обратимой, или необратимой.

    Глубину денатурации можно определить по способности мышечной ткани восстанавливать полностью или частично связь с водой.

    Применяемые в настоящее время методы обработки пищевого сырья с высоким содержанием белка приводят в основном к изменениям, которые можно охарактеризовать как частичную денатурацию. Схема денатурации белковой молекулы представлена на рис. 4.

    Рис. 4. Схема денатурации белковой молекулы:

    А - исходное состояние, Б - начинающееся обратимое развертывание, В - далеко зашедшее необратимое развертывание.

    Наиболее характерными изменениями белка при тепловой денатурации (температура 70-100°С) являются потеря им нативных свойств (способности растворяться в воде, растворах солей и спиртов), а также снижение способности к набуханию.

    Изменения белка, связанные с тепловой денатурацией, тем значительнее, чем выше температура и продолжительность нагревания, действие давления, причем в водном растворе белок денатурирует быстрее, чем находясь в высушенном состоянии.

    Денатурация белков играет важную роль в ряде технологических процессов: при выпечке хлеба, кондитерских изделий, при сушке мяса, рыбы, овощей, молока и яичного порошка, при изготовлении консервов и т.д.

    В условиях доведения продукта до полной готовности обычно при продолжительном воздействии температур близких к 100°С, белки подвергаются дальнейшим изменениям, связанным с разрушением их макромолекул, - гидролизу.

    В начале процесса от белковых молекул могут отщепляться летучие продукту: углекислый газ, сероводород, аммиак, фосфористый водород и другие вещества, участвующие в образовании вкуса и аромата готовых изделий. При длительном воздействии воды и тепла происходит образование водорастворимых азотистых веществ вследствие деполимеризации белковой молекулы, что имеет место, например, при переходе коллагена в глютин.

    Гидролиз белков можно вызвать с помощью протеолитических ферментов, используемых для интенсификации некоторых технологических процессов (размягчение жесткого мяса, приготовление дрожжевого теста и др.).

    

    В состав белков входят органогенные элементы и сера. Некоторые белки содержат фосфор, селен, металлы и др. Процентное содержание химических элементов в белках может варьироваться в зависимости от ткани или органа в пределах, представленных в табл. 1.2.

    Поскольку белки являются полимерами, то представляют собой цепочку, состоящую из аминокислот. Аминокислотная последовательность в белковой молекуле всегда задана генетически. При этом нить аминокислот еще не является белком как таковым, т.е. она не способна выполнять функции белка. В живой клетке белки представляют собой не бесформенные нити аминокислот, а исключительно структурированные образования, имеющие определенную пространственную конфигурацию.

    Таблица 1.2

    В пространственной организации белковой молекулы различают четыре уровня. Первичная структура - последовательность аминокислот в виде цепочки. Вторичная структура - цепочка аминокислот закручена в виде а-спирали. Третичная структура - пространственное расположение полипептидной цепи может быть в виде клубка (глобулярные белки) или в виде волокна (фибриллярные белки) (рис. 1.4). Глобулярные белки хорошо растворимы в воде, к ним относятся яичный белок, казеин молока, белки плазмы крови. Фибриллярные белки либо нерастворимы в воде, либо плохо растворимы, к ним относятся белки мышц, костей, некоторые белки крови (фибрин). Четвертичная структура - объединение нескольких полипептидных цепей, которые могут иметь разные первичную, вторичную и третичную структуры.

    В зависимости от строения третичной и четвертичной структуры белки делят на простые и сложные. Простые белки - протеины состоят только из аминокислот, сложные белки - протеиды содержат в своем составе белковую и небелковую части. Небелковая часть - кофактор может быть представлена нуклеиновыми кислотами, липидами, сахарами, витаминами, фосфорной кислотой и другими соединениями.

    Свойства и структура белка определяются набором входящих в него аминокислот, их общим числом, последовательностью соединения друг с другом и пространственной конфигурацией самой молекулы. Аминокислота - это мелкое органическое соединение, содержащее две функциональные группы, одна из которых имеет кислотные свойства - карбоксильная группа, другая - аминогруппа проявляет себя как основание. Общая структурная формула выглядит следующим образом:

    СООН - карбоксильная группа;

    NH 2 - аминогруппа;

    R - радикал.

    Группировка, отмеченная серым цветом, присутствует у всех аминокислот в неизменном виде, а радикал у каждой аминокислоты свой - по строению радикала собственно и отличаются аминокислоты одна от другой

    В настоящее время известно около 200 аминокислот, но в состав белка входят лишь 20 из них (табл. 1.3), в связи с чем их еще называют

    «волшебными аминокислотами». Главное назначение аминокислот - это участие в построении белковых молекул организма. Но кроме этого аминокислоты самостоятельно выполняют разнообразные функции, представленные в табл. 1.3.

    Часть этих аминокислот, а именно 12, могут синтезироваться в организме человека в достаточном или ограниченном количестве. Аминокислоты, которые синтезируются в организме в достаточном количестве, называются заменимыми аминокислотами. К ним относятся аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин. Аминокислоты, которые синтезируются в организме в ограниченном количестве, получили название частично заменимые аминокислоты. Такими аминокислотами являются аргинин и гистидин, у взрослого человека они синтезируются в необходимом количестве, а у детей - в недостаточном.

    Таблица 1.3

    Краткая характеристика аминокислот

    Название

    Функция

    Источник

    Потребность, г

    Заменимые аминокислоты

    Аланин

    Превращается в печени в глюкозу, участвуя в процессе глюконеогенеза

    Крупа овсяная, крупа рисовая, молоко и молочные продукты, говядина, лосось

    Аргинин

    Участвует в белковом обмене (орнитиновый цикл). Ускоряет заживление ран. Препятствует образованию опухолей. Очищает печень, укрепляет иммунную систему

    Грецкие орехи, кедровые орехи, семена тыквы, семена подсолнечника, семена кунжута, соевые бобы, молоко, мясо, рыба

    Аспарагин

    Участвует в реакциях пере- аминирования. Играет важную роль в синтезе аммиака. Предшественник аспарагиновой кислоты

    Бобовые, спаржа, томаты, орехи, семена, молоко, мясо, яйца, рыба, морепродукты

    Аспарагиновая кислота

    Участвует в процессе глюконеогенеза и последующем запасании гликогена, в процессах синтеза ДНК и РНК. Ускоряет выработку иммуноглобулинов

    Картофель, кокос, орехи, говядина, сыр,яйца

    Продолжение

    Название

    Функция

    Источник

    Потребность, г

    Гистидин

    Участвует в формировании иммунного ответа, в процессах кроветворения

    Злаки, рис, мясо

    Глицин

    Участвует в выработке гормонов. Является сырьем для производства других аминокислот. Тормозит передачу нервных импульсов. Активизирует работу иммунной системы

    Петрушка, мясные продукты, молочные продукты, рыба

    Глутамин

    Является предшественником глутаминовой кислоты. Участвует в работе клеток тонкого кишечника и иммунной системы. Улучшает память

    Картофель, зерновые, соя,орехи грецкие, свинина, говядина, молоко

    Глутаминовая кислота

    Играет главную роль в азотистом обмене. Принимает участие в переносе ионов калия в клетках центральной нервной системы и обезвреживает аммиак. Участвует в нормализации сахара в крови

    Шпинат, мясо, молоко, рыба, сыр

    Пролин

    Принимает участие в синтезе коллагена. Способствует заживлению ран, улучшает структуру кожи

    Мясо, молочные продукты, рыба, яйца

    Серин

    Участвует в образовании активных центров ряда ферментов, синтезе аминокислот. Требуется для обмена жирных кислот и жиров

    Молочные продукты

    Тирозин

    Участвует в биосинтезе меланинов, дофамина, адреналина, гормонов щитовидной железы. Стимулирует деятельность головного мозга

    Семена кунжута, семена тыквы, миндальные орехи, фрукты, молочные продукты

    Продолжение

    Название

    Функция

    Источник

    Потребность, г

    Цистеин

    Участвует в формировании третичной структуры белковых молекул. Обладает антиоксидантными, антиканцерогенными и детоксикант- ными свойствами. Участвует в жировом обмене

    Лук, чеснок, красный перец, молочные продукты, мясо, рыба (лосось), сыр

    Незаменимые аминокислоты

    Валин

    Стимулирует умственную деятельность, активность и координацию. Источник энергии для мышц.

    Молочные продукты, мясо, икра, зерна, хлебные злаки, бобовые, грибы, орехи

    Изолейцин

    Нормализует функции центральной нервной системы

    Молочные продукты, мясо, рыба, яйца, орехи, соя, рожь, чечевица

    Лейцин

    Способствует восстановлению костей, кожи, мышц. Понижает уровень сахара в крови и стимулирует выделение гормона роста. Важное промежуточное звено в синтезе холестерина

    Бобовые, рис, пшеница, орехи, мясо

    Лизин

    Участвует в кальциевом обмене, в формировании коллагена. Требуется для роста, восстановления тканей, синтеза гормонов, антител

    Картофель, яблоки, молочные продукты, мясо, рыба, сыр

    Метионин

    Участвует в обмене жиров, витаминов, фосфолипидов. Необходим для формирования волос, кожи, ногтей. Оказывает липотропное действие

    Кукуруза, творог, яйца, рыба (судак, сом, севрюга, треска), печень

    Треонин

    Препятствует отложению жира в печени. Способствует образованию коллагена, эластина и белков зубной эмали. Усиливает иммунную защиту

    Орехи, семена, бобовые, молочные продукты, яйца, мясо, рыба (лосось), растительные продукты

    Оставшиеся восемь аминокислот не могут синтезироваться в организме человека и животных и должны поступать с пищей, поэтому они получили название незаменимые аминокислоты. К ним относятся валин, изолейцин, лейцин, лизин, треонин, триптофан, фенилаланин и метионин. И отдельно следует выделить две аминокислоты - тирозин и цистеин, которые относятся к частично заменимым, но не потому, что организм не в состоянии их синтезировать, а потому, что для образования этих аминокислот необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходима сера, которую он заимствует у метионина. Изложенную информацию можно иллюстрировать схемой, представленной на рис. 1.5.


    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: