Хпк в сточных водах норматив. Химическое потребление кислорода. Стадии очистки сточных вод и снижения показателей их загрязненности

Частное хозяйство и промышленность формируют большое количество сточных вод на планете. Именно поэтому так важны очистительные сооружения для полученных стоков. Благодаря современным методам обработки и дезинфекции загрязненной воды удается снизить уровень угрозы для окружающей среды, который, так или иначе, есть ввиду сброса грязной жидкой среды в водоёмы.

Основными показателями загрязненности вод, в соответствии с которыми подбирается методология очистки, являются расчет и проведение анализа на ХПК (химическое потребление кислорода) и расчет количества БПК (биологическое потребление кислорода) воды. Именно по этим параметрам определяют уровень загрязненности жидкости и стремятся снизить его до регламентируемых СНиП нормативов специально подобранными способами обеззараживания.

Важно: если в сточных водах промышленного или частного хозяйства уровень ХПК и БПК превышен в разы, значит, вода представляет серьезную угрозу для окружающей среды. А поэтому неприятностей с экологической службой не избежать, если не очистить стоки перед сбросом. При этом если даже при обеззараживании воды уровни показателей ХПК и БПК при расчете и проведении анализа не падают, значит, нарушена технология обработки жидкой среды.

При природном самоочищении воды происходят кислородные реакции, которые позволяют окислять органические примеси в воде. Таким образом, происходит их частичный или полный распад. ХПК - это показатель затратности кислорода на окисление различных примесей в составе воды, а БПК - является показателем потребления кислорода на окисление примесей при взаимодействии с бактериальными аэробными препаратами в очистных сооружениях.

Таким образом, повышенный уровень ХПК и БПК при проведении анализа в стоках говорит о том, что воде требуется много кислорода для окисления вредных примесей. А значит, количество этих самых примесей также велико. То есть вода слишком грязная.

Уровни ХПК и БПК измеряют посредством взятия воды на анализ. При этом воду исследуют при определенных температурных показателях в течение конкретного периода времени.

При окислении посредством кислорода в воде уничтожаются такие элементы как сера, водород, углерод, фосфор и прочие химические составляющие, исключая азот, до состояния СО2, Н 2 О, P 2 O 5 , SО3. Кроме того, при участии в окислении кислорода азот преобразуется в аммонийную соль. Стоит отметить, что во время реакции окисления кислород напрямую участвует в реакции, в то время как водород лишь отдает на каждый окисляемый атом вещества по три своих атома. Особенно это касается окисления азота и образования соли аммония.

Важно: Анализ на БПК в воде проводится более длительно от 5 до 20 суток, а анализ на определение ХПК выполняется от 0,3 до 1,4 суток.

Снижение уровней ХПК и БПК


Химические и биологические уровни потребления кислорода в грязной воде снижаются в специальных очистных сооружениях. Принцип очистки воды приблизительно одинаков. Различаются лишь метода воздействия на патогенные микроорганизмы с целью максимального их уничтожения. При этом очистные станции могут различаться по конструкции и размерам в зависимости от количества перерабатываемых стоков и их первичного образования.

Для снижения уровней химического и биологического (биохимического) показателей кислорода в жидкости применяют от 1 до 4 стадий обработки. Таковыми являются:

  • Первичная стадия . Подразумевает под собой механическое отделение крупных частиц мусора и жировых пленок методом фильтрования или отстаивания. Такие способы являются физико-механическими.
  • На вторичной стадии обеззараживания жидкости используют биологические препараты для окисления более мелких, иногда растворенных в воде органических примесей.
  • При третичной обработке воды происходит нейтрализация и удаление солей металлов и других оставшихся мелких частичек примесей. Здесь чаще всего используют химические и физико-химические методы обработки, такие как обратный осмос, электродиализ, адсорбция, флотация и пр.
  • Четвертая стадия обработки воды не является методом снижения уровней ХПК и БПК, однако направлена на выделение (обезвоживание) оставшегося в воде шла а и его последующую утилизацию.

Важно: чаще всего при очистке стоков применяют первые две стадии обработки воды. После этого вода содержит нормальные показатели биологического и химического потребления кислорода. В Европе иногда используют третью стадию очистки жидкости, но исключительно по необходимости.

Отличия между промышленными и бытовыми сточными водами по уровню ХПК и БПК


Стоки делят по типу образования на промышленные и бытовые. Соответственно, первые содержат больше загрязнителей и химических примесей, которые требуют большого количества химического или биологического поглощения кислорода для их очистки. В свою очередь бытовые загрязняются преимущественно органикой, что формирует в разы низший уровень ХПК и БПК в сравнении с промышленной грязной водой.

Важно: если каким-то образом бытовые сточные воды попадают к промышленным, то они являются активаторами биологического и биохимического поглощения кислорода для очистки жидкости одним из биохимических методов. То есть, качество и скорость очистки воды возрастает в разы.

И наоборот, если в бытовые стоки попадают агрессивные вещества типа хлора или же в воду подмешиваются промышленные стоки, то это может показывать высокий уровень ХПК и БПК для бытовой воды.

Важно: химическое потребление кислорода в стоках измеряется в мг/литр. При этом при проведении анализа уровень ХПК всегда будет выше, чем уровень БПК. Поскольку химическое окисление в воде требует больше кислорода, нежели биологическое.

Одним из наиболее распространенных методов оценки степени загрязненности сточных вод является показатель ХПК (химическое поглощение кислорода - Лурье Ю. Ю. Аналитическая химия промышленных сточных вод.- М.: Химия, 1984.)

В СССР в качестве арбитражного был принят бихроматный метод определения ХПК. Однако этот метод длителен (около 6 ч) и требует большого расхода серной кислоты (165 мл на каждый анализ), поэтому он мало пригоден для массовых анализов в заводских лабораториях и на станциях очистки сточных вод.

Существуют более простые ускоренные варианты этого метода, дающие, однако, несколько заниженные результаты по сравнению с арбитражным методом. Кроме того, известные ускоренные методы не унифицированы и нуждаются в корректировке применительно к исследуемым стокам разных производств.

Нами исследованы среднесуточные стоки различных пивзаводов: Харьковских № 1 и № 2, Изюмского, Купянского, Полтавского, Мелитопольского и Белгородского.

Были изучены оптимальные условия окисления сточных вод растворами бихромата калия и предложена ускоренная методика определения ХПК, по которой на анализ затрачивается около 20 мин, расход серной кислоты составляет 45 мл на одну пробу воды.

Учитывая, что результаты определения ХПК ускоренным методом несколько ниже, получаемых арбитражным методом, представляло интерес установить соотношение между величинами ХПК, найденными двумя методами, и, таким образом, внести корректировку в расчет при анализе ХПК ускоренным методом.

В пробах сточных вод определяли ХПК двумя методами. Зависимость между показателями ХПК, найденную ускоренным (х) и арбитражным (у) методами, выражали в графической форме. Для этого в общем уравнении линейной регрессии У=а+Ьх определяли коэффициенты а и Ь решением системы из двух уравнений:

{ an + bΣx=Σy
aΣx + bΣx 2 =Σxy

где n - число определений ХПК.

Было найдено, что а= -18,5; Ь = - 1,18 (или -1,2). Подставив эти значения в общее уравнение линейной регрессии, получили уравнение (см. рисунок), связывающее значения ХПК, определенные двумя методами:

у = 1,2x - 18,5.

Для определения ХПК разработанным ускоренным методом в коническую колбу объемом 250 мл отбирали пипеткой 5 мл сточной воды (если ХПК сточной воды выше 600 мг О 2 /л , сточную воду перед анализом разбавляли в 2 или более раз дистиллированной водой) , вносили в колбу 5 мл 0,1 н. раствора К 2 Сr 2 О 7 и при помешивании постепенно добавляли 15 мл концентрированной серной кислоты. Через 2 мин раствор охлаждали до комнатной температуры, приливали 50 мл дистиллированной воды, 3-4 капли индикатора (0,1 %-ного раствора фенилантраниловой кислоты) и титровали 0,1 н. раствором соли Мора.

Ежедневно перед анализом сточной воды проверяли титр раствора соли Мора.

Одновременно с анализом опытного образца делали холостой опыт, для чего брали 5 мл дистиллированной воды и проводили все ступени анализа.

ХПК определяли по формуле:

ХПК = 1,2 · ((V 0 - V) · 0,1 · K · 8 · 1000 / a) - 18,5

Где

V 0 , V - соответственно объемы раствора соли Мора, пошедшие на титрование холостой и опытной проб, мл; 0,1 - нормальность раствора соли Мора;

К - поправочный коэффициент для приведения раствора соли Мора к 0,1 н.;

8 - эквивалент кислорода;

А - объем анализируемой сточной воды, мл;

1,2 и 18,4 - коэффициенты для приведения данных ускоренного к показателям арбитражного метода определения ХПК.

График зависимости между величинами ХПК сточных вод, найденных ускоренным (х) и арбитражным (у) методами

Определено ХПК, мг О 2 /л

x/y = z

z 1 - z

(z 1 - z ) 2

разработанным методом (х)

арбитражным методом (у)

Σ =15,01

Σ =0,0853

Примечание:

z = Σ z /n=1

Для оценки точности разработанного метода определения ХПК по данным, приведенным в таблице, находили:

S 2 = Σ (z 1 - z) 2 / (n - 1);

E = + t a · S z

E отн = + E · 100 / 2

где n - число определений ХПК;

z - среднее арифметическое из n определений;

S 2 - выборочная дисперсия метода при данном числе определений;

S z - средняя квадратичная ошибка среднего значения;

а - заданная надежность;

t a - множитель, который находят в специальных таблицах по математической статистике по величинам а и n;

Е - точность определения;

E отн - относительная погрешность метода в %.

Величина S z =0,061, Е=0,044, E отн =4,4%. Таким образом, разработанный метод определения ХПК в сточных водах пивзаводов намного быстрее арбитражного и требует меньшего расхода концентрированной серной кислоты. Относительная погрешность метода составляет ±4,4 %.

Введение

БПК является обязательным анализом, но его частое определение в заводских условиях затруднительно по ряду причин.

Под ХПК понимают количество растворенного в воде кислорода, выраженное в мг О на 1 л воды, необходимое для реакций окисления находящихся в сточной воде органических соединений.

Считается, что БПК составляет около 70% от массы кислорода, требуемого для полного окисления органических веществ в пробе воды до СО 2 и Н 2 О. При окислении сточных вод марганцевокислым калием (перманганатом) расход кислорода (БПК 5) едва достигает 25% его потребности для полного окисления органических веществ по сравнению с бихроматным методом определения окисляемости (ХПК). Поэтому ХПК дает более точную оценку количества органических примесей в воде, а величина ХПК выше, чем БПК 5 . В численном выражении ХПК обычно на 20 – 30% больше БПК, а на картофелекрахмальных заводах в сточных водах ХПК более чем в два раза превышает БПК, что объясняется их химическим составом.

Наиболее полное определение окисляемых органических веществ достигается бихроматным методом (метод Ю. Лурье). Недостатком его является длительное окисление (двухчасовое кипячение) и большой расход концентрированной серной кислоты.

Исследовательский институт водного хозяйства г. Братиславы (Чехия) разработал ускоренный бихроматный метод определения ХПК, который в настоящее время используется и на отечественных сахарных заводах.

Цель анализа провести оценку качества сточных вод по результатам их анализов на ХПК.

Принцип метода анализа основан на окислении органических веществ в сточных водах бихроматом калия.

Реактивы:

0,25 н. раствор K Cr O : 12,258 г K Cr O высушенного при температуре 105 ºС, растворить в 1 дм 3 дистиллированной воды;

0,25 н. раствор соли Мора: 98 г соли Мора растворить в дистиллированной воде, добавить 20 см 3 концентрированной H SO и после охлаждения довести дистиллированной водой до 1 дм 3 ;

Сульфат серебра – кристаллический, ч.д.а;

Фенилантраниловая кислота: 0,25 г фенилантраниловой кислоты растворить в 12 см 3 0,1 н. раствора NaOH и довести дистиллированной водой до 250 см 3 .



Приборы и материалы:

Колба Эрленмейера вместимостью 100 см 3 ;

Пипетки;

Цилиндр на 50 см 3 ;

Стеклянные шарики.

Ход определения

В колбу Эрленмейера вместимостью 100 см 3 пипеткой вводят 10 см 3 пробы или соответствующей ее части, доведенной дистиллированной водой до объема 10 см 3 .

Затем прибавляют приблизительно 0,1 г катализатора Ag SO , пипеткой вводят точно 5 см 3 0,25 н. раствора K Cr O , а из цилиндра при непрерывном помешивании - 15 см 3 концентрированной H SO .

В раствор кладут капилляры или стеклянные шарики для спокойного кипения и выдерживают его одну минуту. Далее прибавляют 20 см 3 дистиллированной воды и смесь охлаждают.

После охлаждения добавляют 3 – 4 капли N - фенилантраниловой кислоты и избыток не прореагировавшего бихромата калия оттитровывают 0,25 н. раствором соли Мора {FeSO (NH ) SO ·6H O} до светло- зеленого окрашивания.

Затем делается глухой опыт: берут 10 см 3 дистиллированной воды и делают анализ подобно рабочему опыту.

Расчеты:

Расчет ХПК проводится по формуле

где α - количество 0,25 н. раствора соли Мора, пошедшее на глухой опыт (10 см 3 дистиллированной воды), см 3 ; O , взятого для титрования, см 3 ;

Х – количество 0,25 н. раствора соли Мора, пошедшее на титрование 25 см 3 0,25 н. раствора, см 3 .

Введение

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) - способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

БПК и ХПК

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода - БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO 2 . При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислородапотребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК - это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК 5). Может определяться также БПК 10 за 10 суток и БПК полн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК 5 составляет около 70 % БПК полн. , но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК 5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК 5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК 5 в водоемах с различной степенью загрязненности

Норматив на БПК полн. не должен превышать: для водоемов хозяйственно-питьевого водопользования - 3 мг/л для водоемов культурно-бытового водопользования - 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК 5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК . Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость ; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

Для оценки загрязнения воды органическими соединениями используется величина БПК, однако, для определения БПК необходимо 5 суток, а иногда данные требуются гораздо быстрее. В этом случае вместо микроорганизмов для окисления органических веществ используют бихромат калия в присутствии серной кислоты (при нагревании). Эта смесь окисляет практически все органические вещества, содержащиеся в загрязненной воде. Величину, характеризующую содержание в воде органических веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называют химическим потреблением кислорода (ХПК) или окисляемостью воды. ХПК выражается в миллиграммах кислорода, пошедшего на окисление веществ, содержащихся в 1 дм 3 воды. Метод определения – титриметрический.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О 2 /дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О 2 /дм 3 .

Растворенный кислород

Растворенный кислород находится в природной воде в виде молекул O 2 . На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

    процесс абсорбции кислорода из атмосферы;

    выделение кислорода водной растительностью в процессе фотосинтеза;

    поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация – обогащение глубинных слоев воды кислородом – происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.

Выделение кислорода в результате фотосинтеза происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P ,N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).

К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe 2+ ,Mn 2+ ,NO 2 - ,NH 4 + ,CH 4 ,H 2 S ). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.

В поверхностных водах содержание растворенного кислорода варьирует в широких пределах – от 0 до 14 мг/дм 3 – и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2,5 мг/дм 3 растворенного кислорода. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/дм 3 . Понижение его до 2 мг/дм 3 вызывает массовую гибель (замор) рыбы.

Уровень загрязненности воды и класс качества

Растворенный кислород

лето, мг/дм 3

зима, мг/дм 3

% насыщения

Очень чистые, I

Чистые, II

Умеренно загрязненные, III

Загрязненные, IV

Грязные, V

Очень грязные, VI

Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания, называется степенью насыщения кислородом. Эта величина зависит от температуры воды, атмосферного давления и солености. Вычисляется по формуле:

M = ,

где M – степень насыщения воды кислородом, %;а – концентрация кислорода, мг/дм 3 ;Р – атмосферное давление в данной местности, Па;N – нормальная концентрация кислорода при данной температуре, минерализации (солености) и общем давлении 101308 Па.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм 3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм 3 в зимний период (при ледоставе) и 6 мг/дм 3 – в летний.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: