В чем заключается геометрический смысл производной. Тема урока "геометрический смысл производной". V. Решение заданий

Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.

Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).

Рисунок 1. График функции

Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.

Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.

Вывод

Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.

В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.

Рисунок 2. Исключительные точки кривой

Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:

\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).

Цели урока:

Учащиеся должны знать:

  • что называется угловым коэффициентом прямой;
  • углом между прямой и осью Ох;
  • в чем состоит геометрический смысл производной;
  • уравнение касательной к графику функции;
  • способ построения касательной к параболе;
  • уметь применять теоретические знания на практике.

Задачи урока:

Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями механический и геометрический смысл производной.

Воспитательные: формировать у учащихся научное мировоззрение.

Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.

Методы организации учебно-познавательной деятельности:

  • наглядные;
  • практические;
  • по мыслительной деятельности: индуктивный;
  • по усвоению материала: частично-поисковый, репродуктивный;
  • по степени самостоятельности: лабораторная работа;
  • стимулирующие: поощрения;
  • контроля: устный фронтальный опрос.

План урока

  1. Устные упражнения (найти производную)
  2. Сообщение ученика на тему “Причины появления математического анализа”.
  3. Изучение нового материала
  4. Физ. Минутка.
  5. Решение заданий.
  6. Лабораторная работа.
  7. Подведение итогов урока.
  8. Комментирование домашнего задания.

Оборудование: мультимедийный проектор (презентация), карточки (лабораторная работа).

Ход урока

“Человек лишь там чего – то добивается, где он верит в свои силы”

Л. Фейербах

I. Организационный момент.

Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.

Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.

Определить значимость изучаемого материала как в данной теме, так и во все курсе.

Устный счет

1. Найдите производные:

" , ()" , (4sin x)", (cos2x)", (tg x)", "

2. Логический тест.

а) Вставить пропущенное выражение.

5х 3 -6х 15х 2 -6 30х
2sinx 2cosx
cos2x … …

II. Сообщение ученика на тему “Причины появления математического анализа”.

Общее направление развития науки, в конечном счете, обусловлено требованиями практики человеческой деятельности. Существование древних государств со сложной иерархической системой управления было бы невозможно без достаточного развития арифметики и алгебры, ибо сбор податей, организация снабжения армии, строительство дворцов и пирамид, создание оросительных систем требовали выполнения сложных расчетов. В эпоху Возрождения расширяются связи между различными частями средневекового мира, развиваются торговля и ремесла. Начинается быстрый подъем технического уровня производства, промышленное применение получают новые источники энергии, не связанные с мускульными усилиями человека или животных. В XI-XII столетии появляются сукновальные и ткацкие станки, а в середине XV - печатный станок. В связи с потребностью в быстром развитии общественного производства в этот период изменяется сущность естественных наук, носивших со времен древности описательный характер. Целью естествознания становится углубленное изучение естественных процессов, а не предметов. Описательному естествознанию древности соответствовала математика, оперировавшая постоянными величинами. Необходимо было создать математический аппарат, который давал бы описание не результата процесса, а характера его течения и свойственных ему закономерностей. В итоге к концу XII столетия, Ньютон в Англии и Лейбниц в Германии завершили первый этап создания математического анализа. Что же такое “математический анализ”? Как можно охарактеризовать, предсказать особенности протекания любого процесса? Использовать эти особенности? Глубже проникать в сущность того или иного явления?

III. Изучение нового материала.

Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.

Введем несколько понятий, которые помогут нам в дальнейшем.

Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой. k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.

Рисунок 1

Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)

Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС <МАС = (объясните почему?). Тогда tg = = , что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.

Рисунок 2

Рисунок 3

Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.

Итак, тангенс угла наклона секущей tg = .

Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х –> 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А . (Рис.3)

Угол наклона секущей стремится к углу наклона касательной.

Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.

Механический смысл производной.

Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной , а Ньютон говорил, что производной называется сама мгновенная скорость .

IV. Физкультминутка.

V. Решение заданий.

№91(1) стр 91 – показать на доске.

Угловой коэффициент касательной к кривой f(х) = х 3 в точке х 0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х 2 ; f’(1) = 3.

№91 (3,5) – под диктовку.

№92(1) – на доске по желанию.

№ 92 (3) – самостоятельно с устной проверкой.

№92 (5) – за доской.

Ответы: 45 0 , 135 0 , 1,5 е 2 .

VI. Лабораторная работа.

Цель: отработка понятия “механический смысл производной”.

Приложения производной к механике.

Задан закон прямолинейного движения точки х = х(t), t.

  1. Среднюю скорость движения на указанном отрезке времени;
  2. Скорость и ускорение в момент времени t 04
  3. Моменты остановки; продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
  4. Наибольшую скорость движения на указанном отрезке времени.

Работа выполняется по 12 вариантам, задания дифференцированы по уровню сложности (первый вариант - наименьший уровень сложности).

Перед началом работы беседа по вопросам:

  1. Каков физический смысл производной перемещения? (Скорость).
  2. Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
  3. Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
  4. Каков физический смысл следующих высказываний: производная движения равна нулю в точке t 0; при переходе через точку t 0 производная меняет знак? (Тело останавливается; меняется направление движения на противоположное).

Образец выполнения работы учащимся.

х(t)= t 3 -2 t 2 +1, t 0 = 2.

Рисунок 4

В противоположном направлении.

Начертим схематично график скорости. Наибольшая скорость достигается в точке

t=10, v (10) =3· 10 2 -4· 10 =300-40=260

Рисунок 5

VII. Подведение итогов урока

1) В чем состоит геометрический смысл производной?
2) В чем состоит механический смысл производной?
3) Сделайте вывод о своей работе.

VIII. Комментирование домашнего задания.

Стр.90. №91(2,4,6), №92(2,4,6,), стр. 92 №112.

Используемая литература

  • Учебник Алгебра и начала анализа.
    Авторы: Ю.М. Колягин, М.В. Ткачева, Н.Е. Федорова, М.И. Шабунина.
    Под редакцией А. Б. Жижченко.
  • Алгебра 11 класс. Поурочные планы по учебнику Ш. А. Алимова, Ю. М. Колягина, Ю. В. Сидорова. Часть 1.
  • Интернет-ресурсы: http://orags.narod.ru/manuals/html/gre/12.jpg

Лекция: Понятие о производной функции, геометрический смысл производной


Понятие о производной функции

Рассмотрим некоторую функцию f(x), которая будет непрерывной на всем промежутке рассмотрения. На рассматриваемом промежутке выберем точку х 0 , а также величину функции в данной точке.


Итак, давайте рассмотрим график, на котором отметим нашу точку х 0 , а также точку (х 0 + ∆х). Напомним, что ∆х – это расстояние (разница) между двумя выбранными точками.


Так же стоит понимать, что каждому х соответствует собственное значение функции у.

Разница значений функции в точке х 0 и (х 0 + ∆х) называется приращением данной функции: ∆у = f(х 0 + ∆х) - f(х 0).


Давайте обратим внимание на дополнительную информацию, которая имеется на графике – это секущая, которая названа КL, а также треугольник, который она образует с интервалами KN и LN.


Угол, под которым находится секущая, называется её углом наклона и обозначается α. Легко можно определить, что градусная мера угла LKN так же равна α.


А теперь давайте вспомним соотношения в прямоугольном треугольнике tgα = LN / KN = ∆у / ∆х.

То есть тангенс угла наклона секущей равен отношению приращения функции к приращению аргумента.


В свое время, производная – это предел отношения приращения функции к приращению аргумента на бесконечно малых интервалах.

Производная определяет скорость, с которой происходит изменение функции на некотором участке.


Геометрический смысл производной


Если найти производную любой функции в некоторой точке, то можно определить угол, под которым будет находится касательная к графику в данной токе, относительно оси ОХ. Обратите внимание на график – угол наклона касательно обозначается буквой φ и определяется коэффициентом k в уравнении прямой: y = kx + b.


То есть можно сделать вывод, что геометрическим смыслом производной является тангенс угла наклона касательной в некоторой точке функции.

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B (x ; f (x )). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆ x ; ВС =∆у; tgβ =∆ y /∆ x .

Так как АС || Ox , то Ð ALO = Ð BAC = β (как соответственные при параллельных). Но Ð ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая ( a ), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tg β =∆ y /∆ x , то получим

или tg a = f "(x 0 ), так как
a -угол накло­на касательной к положительному направлению оси Ох

, по определению производной. Но tg a = k - угловой коэффициент каса­тельной, значит, k = tg a = f "(x 0 ).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x (t ). Известно (из курса физики), что средняя скорость за промежуток времени [ t 0 ; t 0 + ∆ t ] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

V ср = ∆ x /∆ t . Перейдем к пределу в последнем равенстве при ∆ t → 0.

lim V ср (t ) = n (t 0 ) - мгновенная скорость в момент времени t 0 , ∆ t → 0.

а lim = ∆ x /∆ t = x "(t 0 ) (по определению производной).

Итак, n (t ) = x "(t ).

Физический смысл производной заключается в следующем: произ­водная функции y = f ( x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u (t ) = x "(t ) - скорость,

a (f ) = n "(t ) - ускорение, или

a (t ) = x "(t ).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ (t ) - изменение угла от времени,

ω = φ "(t ) - угловая скорость,

ε = φ "(t ) - угловое ускорение, или ε = φ "(t ).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m (х) - масса,

x Î , l - длина стержня,

р = m "(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = - kx , x – переменная координата, k - коэффициент упругости пружины. Положив ω 2 = k / m , получим дифференциальное уравнение пружинного маятника х"( t ) + ω 2 x(t ) = 0,

где ω = √ k /√ m частота колебаний ( l / c ), k - жесткость пружины ( H / m ).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin (ωt + φ 0 ) или у = Acos (ωt + φ 0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: