Формула длины большей дуги окружности. Окружность и вписанный угол. Визуальный гид (2019)

Формула для нахождения длины дуги окружности довольно проста, и очень часто на важных экзаменах типа ЕГЭ встречаются такие задачи, которые невозможно решить без ее применения. Также необходимо ее знать для сдачи международных стандартизированных тестов, например SAT и других.

Чему равна длина дуги окружности?

Формула выглядит следующим образом:

l = πrα / 180°

Что собой представляет каждый из элементов формулы:

  • π - число Пи (постоянная величина, равная ≈ 3,14);
  • r - радиус данной окружности;
  • α - величина угла, на который опирается дуга (центральный, а не вписанный).

Как видно, чтобы решить задачу, в условии должны присутствовать r и α. Без этих двух величин длину дуги найти невозможно.

Каким образом выводится эта формула и почему она так выглядит?

Все предельно легко. Станет намного понятнее, если в знаменателе поставить 360°, а в числителе спереди добавить двойку. Также можно α не оставить в дроби, вывести ее и написать со знаком умножения. Это вполне можно себе позволить, так как данный элемент стоит в числителе. Тогда общий вид станет таким:

l = (2πr / 360°) × α

Просто для удобства сократили 2 и 360°. А теперь, если приглядеться, то можно заметить очень знакомую формулу длины всей окружности, а именно - 2πr. Весь круг состоит из 360°, потому мы делим полученную меру на 360 частей. Затем мы умножаем на число α, то есть на то количество "кусков пирога", которое нам требуется. Но всем доподлинно известно, что число (то есть длина всей окружности) не может делиться на градус. Что же делать в таком случае? Обычно, как правило, градус сокращается с градусом центрального угла, то есть с α. После же остаются только числа, а в итоге получается конечный ответ.

Этим можно объяснить то, почему длина дуги окружности находится таким образом и имеет такой вид.

Пример задачи средней сложности с применением данной формулы

Условие: Имеется окружность с радиусом 10 сантиметров. Градусная мера центрального угла составляет 90°. Найти длину дуги окружности, образованную этим углом.

Решение: l = 10π × 90° / 180° = 10π × 1 / 2=5π

Ответ: l = 5π

Также возможно, чтоб вместо градусной меры давалась бы радианная мера угла. Ни в коем случае не стоит пугаться, ведь на сей раз задача стала намного легче. Чтобы перевести радианную меру в градусную, нужно данное число умножить на 180° / π. Значит, теперь можно подставить вместо α следующую комбинацию: m × 180° / π. Где m - это радианное значение. А дальше 180 и число π сокращаются и получается совершенно упрощенная формула, которая выглядит следующим образом:

  • m - радианная мера угла;
  • r - радиус данной окружности.

Окружность - основная фигура в геометрии, свойства которой рассматривают в школе в 8 классе. Одна из типичных задач, связанных с окружностью, заключается в нахождении площади некоторой ее части, которая носит название кругового сектора. В статье приводятся формулы площади сектора и длины его дуги, а также пример их использования для решения конкретной задачи.

Понятие об окружности и круге

Перед тем как приводить формулу площади сектора окружности, рассмотрим, что собой представляет указанная фигура. Согласно математическому определению, под окружностью понимают такую фигуру на плоскости, все точки которой равноудалены от некоторой одной точки (центра).

Когда рассматривают окружность, то пользуются следующей терминологией:

  • Радиус - отрезок, который проводится от центральной точки до кривой окружности. Его принято обозначать буквой R.
  • Диаметр - это отрезок, который соединяет две точки окружности, но при этом проходит также через центр фигуры. Его обычно обозначают буквой D.
  • Дуга - это часть кривой окружности. Измеряют ее либо в единицах длины, либо с использованием углов.

Круг - еще одна важная фигура геометрии, он представляет собой совокупность точек, которая ограничена кривой окружности.

Площадь круга и длина окружности

Отмеченные в названии пункта величины рассчитываются с использованием двух простых формул. Они приведены ниже:

  • Длина окружности: L = 2*pi*R.
  • Площадь круга: S = pi*R 2 .

В этих формулах pi - это некоторая константа, которая называется числом Пи. Оно является иррациональным, то есть не может быть точно выражено простой дробью. Приблизительно число Пи равно 3,1416.

Как видно из приведенных выражений, чтобы рассчитать площадь и длину достаточно знать только радиус окружности.

Площадь сектора круга и длина его дуги

Перед тем как рассматривать соответствующие формулы, напомним, что угол в геометрии принято выражать двумя основными способами:

  • в шестидесятеричных градусах, причем полный оборот вокруг своей оси равен 360 o ;
  • в радианах, которые выражаются в долях числа pi и связаны с градусами следующим равенством: 2*pi = 360 o .

Сектор круга - это фигура, ограниченная тремя линиями: дугой окружности и двумя радиусами, находящимися на концах этой дуги. Пример кругового сектора изображен на фото ниже.

Получив представление о том, что такое сектор для круга, легко понять, как вычислить его площадь и длину соответствующей дуги. Из рисунка выше видно, что дуге сектора соответствует угол θ. Мы знаем, что полная окружность соответствует 2*pi радианам, значит, формула площади кругового сектора примет вид: S 1 = S*θ/(2*pi) = pi*R 2 *θ/(2*pi) = θ*R 2 /2. Здесь угол θ выражен в радианах. Аналогичная формула площади сектора в случае, если угол θ измеряется в градусах, будет иметь вид: S 1 = pi*θ*R 2 /360.

Длина дуги, образующей сектор, вычисляется по формуле: L 1 = θ*2*pi*R/(2*pi) = θ*R. И если θ известен в градусах, тогда: L 1 = pi*θ*R/180.

Пример решения задачи

Покажем на примере простой задачи, как пользоваться формулами площади сектора круга и длины его дуги.

Известно, что колесо имеет 12 спиц. Когда колесо делает один полный оборот, то оно преодолевает расстояние 1,5 метра. Чему равна площадь, заключенная между двумя соседними спицами колеса, и чему равна длина дуги между ними?

Как видно из соответствующих формул, чтобы ими пользоваться, необходимо знать две величины: радиус окружности и угол дуги. Радиус можно вычислить, исходя из знания длины окружности колеса, поскольку пройденное им расстояние за один оборот, точно ей соответствует. Имеем: 2*R*pi = 1,5, откуда: R = 1,5/(2*pi) = 0,2387 метра. Угол между ближайшими спицами можно определить, зная их число. Полагая, что все 12 спиц делят равномерно круг на равные сектора, мы получаем 12 одинаковых секторов. Соответственно, угловая мера дуги между двумя спицами равна: θ = 2*pi/12 = pi/6 = 0,5236 радиан.

Мы нашли все необходимые величины, теперь их можно подставить в формулы и посчитать требуемые условием задачи значения. Получаем: S 1 = 0,5236*(0,2387) 2 /2 = 0,0149 м 2, или 149 см 2 ; L 1 = 0,5236*0,2387 = 0,125 м, или 12,5 см.

Задачи на нахождение площади круга - обязательная часть ЕГЭ по математике. Как правило, этой теме отводится сразу несколько заданий в аттестационном испытании. Понимать алгоритм нахождения длины окружности и площади круга должны все старшеклассники, независимо от уровня их подготовки.

Если подобные планиметрические задачи вызывают у вас затруднения, рекомендуем обратиться к образовательному порталу «Школково». С нами вы сможете восполнить пробелы в знаниях.

В соответствующем разделе сайта представлена большая подборка задач на нахождение длины окружности и площади круга, подобных тем, которые включены в ЕГЭ. Научившись их правильно выполнять, выпускник сможет успешно справиться с экзаменом.

Основные моменты

Задачи, в которых требуется применить формулы площади, могут быть прямыми и обратными. В первом случае известны параметры элементов фигуры. При этом искомой величиной является площадь. Во втором случае, наоборот, площадь известна, а найти необходимо какой-либо элемент фигуры. Алгоритм вычисления правильного ответа в подобных заданиях различается только порядком применения базовых формул. Именно поэтому, приступая к решению таких задач, необходимо повторить теоретический материал.

На образовательном портале «Школково» представлена вся базовая информация по теме «Нахождение длины окружности или дуги и площади круга», а также по другим темам, например, Ее наши специалисты подготовили и изложили в максимально доступной форме.

Вспомнив основные формулы, учащиеся могут приступить к выполнению задач на нахождение площади круга, подобных тем, которые включены в ЕГЭ, в режиме онлайн. Для каждого упражнения на сайте представлено подробное решение и дан правильный ответ. При необходимости любое задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и обсудить с преподавателем.

Часть фигуры, которая образует окружность, точки которой равноудалены, называется дугой. Если из точки центра окружности, провести лучи в точки, совпадающие с концами дуги, будет образован её центральный угол.

Определение длины дуги

Производится по следующей формуле:

где L – искомая длина дуги, π = 3,14 , r – радиус окружности, α – центральный угол.

L

3,14 × 10 × 85

14,82
Ответ:

Длина дуги окружности равна 14,82 сантиметра.

В элементарной геометрии под дугой понимается подмножество окружности, расположенной между двумя расположенными на ней точками. На практике решать задачи по определению ее длины инженерам и архитекторам приходится достаточно часто, поскольку этот геометрический элемент широко распространен в самых разнообразных конструкциях.

Пожалуй, первым, перед кем встала эта задача, были древние зодчие, которым так или иначе приходилось определять этот параметр для сооружения сводов, широко используемых для перекрытия промежутков между опорами в круглых, многоугольных или эллиптических зданиях. Если внимательно присмотреться к дошедшим до наших дней шедеврам древнегреческого, древнеримского и особенно арабского зодчества, то можно заметить, что в их конструкциях дуги и своды встречаются чрезвычайно часто. Творения современных архитекторов ими не так богаты, но эти геометрические элементы наличествуют, конечно же, и в них.

Длину различных дуг необходимо рассчитывать при сооружении автомобильных и железных дорог, а также автодромов, причем во многих случаях от правильности и точности вычислений во многом зависит безопасность движения. Дело в том, что многие повороты магистралей с точки зрения геометрии представляют собой именно дуги, и по движению по ним на транспорт воздействуют различные физические силы. Параметры их результирующей во многом определяются длиной дуги, а также ее центральным углом и радиусом.

Конструкторам машин и механизмов приходится вычислить длины различных дуг для правильной и точной компоновки составных частей различных агрегатов. В данном случае ошибки в расчетах чреваты тем, что важные и ответственные детали будут неправильно взаимодействовать друг с другом и механизм просто не сможет функционировать так, как планируют его создатели. В качестве примеров конструкций, изобилующих такими геометрическими элементами, как дуги, можно привести двигатели внутреннего сгорания, коробки переключения передач, дерево- и металлообрабатывающее оборудование, кузовные элементы легковых и грузовых автомобилей и т.д.

Дуги достаточно широко встречаются в медицине, в частности, в стоматологии. Например, они используются для исправления неправильного прикуса. Корректирующие элементы, называемые брекетами (или брекет-системами) и имеющие соответствующую форму, изготавливаются из специальных сплавов, и устанавливаются таким образом, чтобы изменить положение зубов. Само собой разумеется, что для того, чтобы лечение проходило успешно, эти дуги должны быть очень точно рассчитаны. Кроме того, дуги очень широко используются в травматологии, и, пожалуй, самым ярким примером тому является знаменитый аппарат Илизарова, изобретенный российским врачом в 1951 году и чрезвычайно успешно используемый по сей день. Неотъемлемыми его частями являются металлические дуги, снабженные отверстиями, через которые продеваются специальные спицы, и являющиеся основными опорам всей конструкции.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: