Диффузионный потенциал расчет. Мембранный диффузионный потенциал. Строение двойного электрического слоя


После проведения курса лучевой терапии у пациентов развивается лучевая болезнь, оказывающая угнетающее воздействие на многие жизненно важные функции организма.

Развитие лучевой болезни связано с тем, что клетки здоровых тканей поражаются ионизирующим излучением наравне с клетками опухоли.

Ионизирующая радиация обладает способностью накапливаться в теле.

Ранние и проявляющиеся позже признаки лучевой болезни – боли, тошнота и рвота, отеки, повышение температуры, интоксикация, цистит и др. – обусловлены негативным воздействием на активные клетки организма ионизирующего излучения. Наиболее подвержены поражению клетки эпителия желудочно-кишечного тракта, нервной ткани, иммунной системы, костного мозга, половых органов.

Интенсивность проявлений лучевой болезни различается в зависимости от лучевой нагрузки и особенностей организма пациента. Что необходимо делать онкологическим пациентам для профилактики осложнений после лучевой терапии и для улучшения своего самочувствия?

Лучевая болезнь имеет несколько стадий, при этом каждый последующий этап болезни отличает нарастание симптомов и ухудшение состояние больного. Так, если вначале человека беспокоят только общая слабость, потеря аппетита и диспепсические явления, то с течением времени, с развитием заболевания, он ощущает ярко выраженную астенизацию (ослабление) организма, угнетение иммунитета и нейроэндокринной регуляции.

После проведения лучевой терапии могут развиваться серьезные повреждения кожного покрова - т.н. лучевые ожоги, требующие реабилитации. Часто лучевые ожоги проходят самостоятельно, но в некоторых случаях они настолько серьезны, что для их лечения может потребоваться специальная медицинская помощь.

Лучевая терапия может также спровоцировать воспалительные процессы, которые легко переходят в такие осложнения, как экссудативный эпидермит, эзофагит, пульмонит, перихондрит. Иногда осложнения затрагивают слизистые оболочки органов, располагающихся близко к месту воздействия лучей.

Кроме того, лучевая терапия может оказать серьезное влияние на кроветворный процесс в организме. Так, может измениться состав крови, в частности развиться анемия, когда количество гемоглобина в крови опускается ниже допустимой границы.

Следует заметить, что высокотехнологичное современное оборудование сводит к минимуму возможные осложнения.

В период восстановления необходимо периодически проверять результаты терапии, вовремя сдавать необходимые анализы, регулярно проходить контрольный осмотр у врача-онколога.

Специалист вовремя установит причину нарушений, даст необходимые рекомендации, выпишет необходимые препараты для лечения.

Например, повысить количество гемоглобина в крови помогут препараты на основе эритропоэтина, а также препараты железа, витамин В12 и фолиевая кислота.

Серьезной реакцией организма на процедуры лучевой терапии может стать депрессивное состояние, проявляющееся в т.ч. и в повышенной раздражительности. Необходимо в этот период найти в жизни положительные эмоции, настроиться на оптимистический лад. Очень важной в этот сложный и ответственный период жизни является поддержка близких людей.

В настоящее время все большее количество пациентов, прошедших курс лучевой терапии, успешно справляются с заболеванием и возвращаются к нормальной полноценной жизни. Однако необходимо помнить, что даже если человек по истечении периода 2-3 года выздоровел, не следует отказываться от регулярных осмотров у врача с целью обнаружения возможных рецидивов, а также от курсов поддерживающей и общеукрепляющей терапии и санаторно-курортного лечения.

Применение фитотерапии для восстановления организма

Некоторые пациенты после лучевой терапии достаточно быстро восстанавливаются с помощью отдыха и сбалансированного питания. У другой части больных после лечения могут возникать серьезные осложнения, вызванные общей интоксикацией организма и требующие медикаментозной помощи.

Для ускорения процессов восстановления организма большую помощь могут оказать и средства народной медицины. Опытный специалист-фитотерапевт подберет травы и их сборы, которые помогут очистить организм от радионуклидов, улучшат формулу крови, укрепят иммунитет и положительно скажутся на самочувствии пациента.

Использование медуницы


Специалисты рекомендуют применять после лучевой терапии препараты медуницы.

Растение содержит богатейший комплекс микроэлементов, способствующих восстановлению и улучшению формулы крови.

Кроме этого, прием препаратов растения способствует стимулированию и укреплению иммунитета, повышению адаптогенных функций организма, улучшению психоэмоционального состояния, избавлению от эмоционального истощения.

Для пациентов, перенесших лучевую терапию, фитотерапевты рекомендуют употреблять водный настой и спиртовую настойку растения. Противопоказаний к препаратам медуницы нет, но их следует применять с осторожностью при атонии кишечника и повышенной свертываемости крови. Не следует принимать препараты растения натощак – это может спровоцировать тошноту.

Для приготовления настоя 2 ст. ложки измельченной травы заливают стаканом кипятка, настаивают 3-4 часа, отфильтровывают. Употребляют по 1/4 стакана 3-4 раза в сутки, с небольшим количеством меда. Наружно настой можно использовать для спринцеваний прямой кишки или влагалища.

Спиртовую настойку готовят следующим образом: в банку объемом 1 л укладывают сырую измельченную траву, заполняя 0,5 объема (если сырье сухое, заполняют 0,3 объема банки), заливают доверху водкой, закрывают и ставят на 14 дней в затемненное место. Отфильтровывают. Употребляют препарат по 1 ч. ложке 3-4 раза в день, с небольшим количеством воды.

Использование родиолы розовой и элеутерококка

Использование таких растений-адаптогенов, как родиола розовая и элеутерококк, очень эффективны для восстановления больных, которые проходят курс лечения лучевой терапией. Препараты ослабляют токсическое воздействие облучения на организм и улучшают показатели формулы крови. Специалисты указывают также на противоопухолевые свойства данных растений.

В качестве лечебных препаратов употребляют спиртовые настойки родиолы и элеутерококка. Важно отметить, что стимулирующее действие этих препаратов на кроветворение начинается с 5-6-го дня от начала употребления препаратов, а выраженный лечебный эффект наблюдается к 10-12-му дню. Поэтому принимать препараты растений лучше начинать за 5-6 дней до начала облучения.

Спиртовую настойка родиолы розовой готовят так: 50 г корневищ, предварительно измельченных, заливают 0,5 л водки и ставят на 2 недели в темное место, после чего отфильтровывают. Принимают по 20-30 капель 2-3 раза в сутки за полчаса до приема пищи (последний прием должен быть не позднее, чем за 4 часа до сна). Для лиц, склонных к повышению артериального давления, прием препарата начинают с 5 капель трижды в день. При отсутствии негативных явлений дозу приема увеличивают до 10 капель.

Спиртовую настойку элеутерококка пьют по 20-40 капель дважды в день перед едой. Курс лечения препаратами – 30 дней. Через небольшой перерыв курс лечения можно при необходимости повторить.

Использование сборов трав


Для реабилитации больных, сильно ослабленных после курса лучевой терапии, фитотерапевты рекомендуют использовать специальные целебные сборы трав.

Целебные настои, приготовленные из таких сборов снабжают истощенный организм витаминами, повышают иммунитет, эффективно выводят шлаки, обеспечивают устойчивую работу всех органов и систем организма.

Очень эффективен сбор с такими компонентами, как: береза (почки), бессмертник (цветки), душица обыкновенная (трава), дягиль лекарственный (корень), зверобой продырявленный (трава), крапива двудомная (листья), липа сердцевидная (цветки), мать-и-мачеха обыкновенная (листья), мята перечная (листья), одуванчик лекарственный (корень), подорожник большой (листья), пустырник (листья), ромашка аптечная (цветки), сосна обыкновенная (почки), тысячелистник обыкновенный (трава), чабрец (трава), чистотел большой (трава), шалфей лекарственный (трава).

Все компоненты сбора берут в равных весовых количествах, измельчают и смешивают. 14 ст. ложек сбора заливают 3 л кипятка, накрывают крышкой, плотно укутывают и дают настояться не менее 8 часов. Далее настой фильтруют через несколько слоев марлевой ткани, сливают в банку и ставят на хранение в холодильник. Срок хранения средства – 5 дней. Употребляют настой 2 раза в день: натощак (за час до первого приема пищи) и днем (но не перед сном). Разовая доза – 1 стакан настоя. Настой не имеет побочных эффектов, его можно употреблять длительное время.

Использование бадана и крапивы

Для улучшения формулы крови, особенно при снижении тромбоцитов, фитотерапевты рекомендуют использовать препараты корня бадана и листьев крапивы.

Для приготовления отвара корня бадана 10 г сырья заливают стаканом кипятка, держат 30 минут на водяной бане, настаивают в течение часа, фильтруют. Принимают по 1-2 ст. ложки трижды в день перед едой.

Для приготовления отвара крапивы 1 ст. ложку свежих измельченных листьев растения заливают стаканом горячей воды, доводят до кипения, кипятят в течение 8-10 минут. Снимают с огня, дают настояться в течение часа, процеживают. Принимают по 2-3 ст. ложки 3-4 раза в сутки перед едой.

В холодное время года можно использовать настой, приготовленный из сухих листьев крапивы. 10 г сухого сырья заливают стаканом кипятка, настаивают в термосе 20-30 минут, фильтруют. Употребляют целебный настой малыми порциями в течение дня, перед приемами пищи.

Напомним, что любые самостоятельные лечебные мероприятия должны согласовываться с лечащим врачом в обязательном порядке.

Когда человек сталкивается с болезнью, связанную с новообразованиями в организме, задается вопросом «Лучевая терапия — что это такое и каковы последствия».

Лучевая терапия – общепризнанный и относительно эффективный метод борьбы с одним из коварнейших заболеваний человечества – раком. Уже много лет данный вид борьбы со злокачественными опухолями различной локализации и степени, активно применяется в онкологии. По статистике в более чем половине случаев заболевания раком, лучевая терапия, в сочетании с другими методами лечения, дает положительный результат и больной исцеляется. Этот факт дает неоспоримое преимущество применения лучевой терапии перед другими методами лечения.

История создания лучевой терапии

Открытие рентгеновских лучей дало много возможностей в медицине. Стало возможным точное диагностирование различного рода заболеваний путем обследования внутренних органов рентгеном. Изучив рентгеновское излучение, ученые пришли к выводу, что определенная его доза пагубно влияет на вредоносные клетки. Это стало настоящим прорывом в медицине, появился шанс излечивать всех больных раком. Также были выявлены масса побочных эффектов после лучевой реакции, так как затрагивались и здоровые клетки.

Многие ученые скептически относились к лучевой терапии. Дело дошло до того, что исследования были запрещены, а исследователи, занимавшиеся возможностями рентгеновских излучений, резко подверглись критике как со стороны некоторых именитых коллег, так и со стороны общественности. Но неуклонное возрастание числа больных раковыми заболеваниями заставило ученых-физиков, онкологов, радиологов вернуться к исследованиям. На сегодняшний день современное оборудование позволяет без вреда для здоровых клеток осуществлять лучевую терапию, что дает многим больным надежду на исцеление. И во многих случаях это единственный шанс побороть болезнь.

Ведущие клиники в Израиле

Итак, разберемся, что же это такое «лучевая терапия».

Лучевая или радиотерапия (радиология) – один из методов лечения раковых опухолей посредством высокоэнергетического излучения. Цель применения данной терапии – ликвидировать раковые клетки, путем непосредственного разрушения их ДНК, тем самым устранив им возможность к размножению.

Побочные эффекты данного вида излучения снизились в разы по сравнению с первыми применениями, что дает хорошие прогнозы на исцеление. Стало возможным менять направление и дозу излучения, благодаря которым эффективность терапии возросла. При раннем обнаружении рака использование только лучевой терапии дает шанс на полное выздоровление.

Виды и методы лучевой терапии


Раковые клетки хорошо поддаются лечению с помощью лучевой терапии, так как отличаются от здоровых клеток тем, что размножаются очень быстро, что делает их чувствительными к внешним воздействиям. Их ликвидация осуществляется благодаря разрушению ДНК злокачественных клеток. Часто лучевую терапию совмещают с другими методами лечения рака, такими как химиотерапия, химиолучевая, лазерная терапия и хирургическая операция. Вид терапии, их сочетание, выбирается в зависимости от размеров образования, локализации, стадии, сопутствующих заболеваний. Так, например, нередко лучевую терапию проводят до операции.

Причиной тому является уменьшение размера опухоли, а также непопадание злокачественных клеток в здоровые области организма во время хирургической операции. При тяжелых случаях заболеваний, когда злокачественная опухоль активно метастазирует, лучевая терапия является единственно возможным методом борьбы с болезнью, так как другие методы уже неэффективны. К данной терапии после операции прибегают в том случае, если врачи допускают, что еще остались злокачественные клетки в прилежащих областях к месту опухоли.

  1. Альфа-частицы – воздействуют на организм с помощью альфа-излучения путем изотопов, в частности радон и продукты торона. Больной принимает радоновые ванны, пьет радоновую воду, на необходимые участки кожи накладываются повязки, пропитанные продуктами радона и торона. Также применяются мази, в составе которых содержатся данные вещества. Их применение целесообразно только при некоторых болезнях нервной, кровеносной, эндокринной системы. При раковых заболеваниях данным метод противопоказан;
  2. Бета-частицы - используются бета-частицы и некоторые радиоактивные изотопы, такие как фосфор, таллий и др.. Различают внутритканевую, внутриполостную и аппликационную бета-терапию. Например, аппликационную терапию применяют при воспалительных процессах глаз, которые приобрели хронический характер. Внутритканевая терапия применяется для лечения радиорезистентных опухолей. Применяются такие радиоактивные растворы как растворы золота, иттрия, серебра. Ими пропитывается ткань и прикладывается к пораженному участку. При внутриполостной терапии вводят коллоидные растворы определенного типа. В основном применяется такой вид бета-терапии при опухолях брюшины или плевры;
  3. . Достижением науки стало то, что рентгеновское излучение стало возможно регулировать, тем самым влиять на поражения различного характера. Чем выше энергия излучения, тем выше проникающая способность. Так, для относительно неглубоких поражений или слизистых оболочек используется короткофокусная рентгенотерапия. Для более глубоких повреждений энергия излучения увеличивается;
  4. . Еще одно немаловажное достижение современной медицины. Именуется еще как гамма-нож. Суть технологии заключается в том, что происходит ионизирующее облучение в очень высоких дозах, в основном применяющаяся однократно. Радиохирургия или стереотаксическая хирургия применяется и для ликвидации незлокачественных опухолей в труднодоступных местах. Самым главным ее достоинством является то, то нет необходимости в трепанации черепа и других хирургических вмешательств, что значительно уменьшает время восстановления больного и возможные осложнения;
  5. Дистанционная лучевая терапия . Само название дает представление о данном методе терапии. Аппарат располагается вне организма. Луч направляется на опухоль, проходя через кожу и ткани;
  6. Контактная терапия , когда носитель излучения непосредственно вводится в опухолевую ткань. Носители могут быть внутриполостными, внутрисосудистыми, внутритканевыми. При борьбе с болезнью часто используется такой контактный вид терапии как брахитерапия. Отлично зарекомендовала себя в борьбе ;
  7. Радионуклидная лучевая терапия радиоактивные частицы в тех или иных дозах содержатся в препаратах, при приеме которых, они способны накапливаться именно в проблемной области человека. Примером данной терапии является йод в щитовидной железе.
  8. Протонные пучки . Настоящим прорывом в медицине стало применение протонных пучков, которые показали себя как очень эффективный метод лечения рака. В специальных ускорителях разгоняют протоны. Достигнув места назначения, протоны выделяют радиоактивное излучение, чья цель уничтожение злокачественных клеток. Эффективность метода заключается в том, что благодаря целенаправленному излучению, здоровые клетки при этом не затрагиваются, а вредоносные клетки уничтожаются по максимуму. Единственным недостатком является дороговизна, как самого лечения, так и оборудования. Всего 1% больных в России имеют возможность воспользоваться данным методом лечения.

Каждый вид терапии применяется для определенных видов заболеваний и имеет свои индивидуальные особенности. Дистанционный метод радиотерапии, например, часто используется в послеоперационный период при раке молочной железы, дабы удалить оставшиеся после операции раковые клетки. Это предотвратит повторное появление злокачественных клеток. Но если метастазы уже имеют место быть, то для уменьшения их размеров, также используют дистанционный метод. Дистанционный метод терапии широко используется при злокачественных образованиях в женских половых органах как в сочетании с хирургическим вмешательством, как и самостоятельная терапия.

Широко используется для лечения . Капсулы и иглы, внутри которых содержится определенная доза изотопов, размещаются в опухолевое образование. Тем самым уничтожается сама опухолевая ткань, а близлежащие здоровые ткани не затрагиваются.

Этапы лучевой терапии.

При лечении любых заболеваний использованием лучевой терапии, важен каждый этап лечения. Это связано со сложностью самой терапии, состоянием больного до и после нее. Очень важно не упустить или недовыполнить что-либо из предписаний специалистов. Рассмотрим эти этапы:


Первый этап – это так называемый предлучевой период
. Подготовка больного к непосредственно самой терапии играет очень большую роль в борьбе с болезнью. Пациент тщательно обследуется на наличие сопутствующих заболеваний, при наличии которых, больному проводят лечебную терапию. Кожные покровы тщательно изучаются, так как для лучевой терапии важна их целостность и здоровое состояние. После всего этого, ряд специалистов, таких как онколог, радиотерапевт, физик, дозиметрист решают, какая доза облучения будет применяться, именно через какие области ткани будет осуществляться терапия.

С точностью до миллиметра рассчитывается расстояние луча к опухоли. Для этого используется сверхсовременная техника, которая способна воссоздать трехмерное изображение пораженного органа. После всех выполненных подготовительных процедур, специалисты отмечают на теле области, откуда будет осуществляться воздействие на опухолевые клетки. Воспроизводится это путем маркирования данных участков. Пациента консультируют, как себя вести и что делать, чтобы сохранить эти маркеры до предстоящей терапии.

Второй этап и самый ответственный – это непосредственно лучевой период . Количество сеансов курса лучевой терапии зависят от некоторых факторов. Может длиться от одного месяца до двух. А если лучевая терапия проводится для подготовки больного к хирургической операции, то время периода сокращается до 2-3 недель. Обычно сеанс проводят в течение пяти дней, после чего два дня пациент восстанавливает свои силы. Пациента помещают в специально оборудованную комнату, где он лежит или сидит. На отмеченную область тела устанавливают источник излучения. Чтобы не повредить здоровые ткани, остальные участки закрывают защитными блоками. После чего медицинский персонал, проинструктировав больного, покидают помещение. Связь с ними происходит через специальное оборудование. Процедура абсолютно безболезненная.

Третий и заключительный этап – постлучевой период, период реабилитации . Больной прошел непростой пусть для борьбы с заболеванием и когда основной период, а именно сам процесс лучевой терапии прошел, человек чувствует сильную физическую и эмоциональную усталость, апатию. Родные и близкие пациента должны создать ему эмоционально комфортную обстановку. Человек должен полноценно отдыхать и питаться, посещать культурные мероприятия, театры, музеи, словом вести полноценную, здоровую жизнь. Это поможет восстановить силы. Если лучевая терапия производилась дистанционным методом, необходимо ухаживать за кожей, которая подвергалась излучению, следуя предписаниям врача.

После всех этапов лечения, необходимо периодически посещать специалистов. Врач должен контролировать состояние больного во избежание осложнений. Но если состояние ухудшилось, необходимо внепланово посетить лечащего врача.


Во время прохождения лучевой терапии, врач дает рекомендации, что можно, чего нельзя делать в этот очень важный период лечения. В основном эти правила таковы:

Питание играет очень важную роль для восстановления сил больного. В еде человека должны присутствовать белки, жиры, углеводы в необходимом количестве. Не возбраняется высококалорийная еда, так как человек теряет очень много энергии и сил. Врачи рекомендуют больше потреблять жидкости. Причиной тому – наличие в организме токсинов в большом количестве, которые возникают при распаде зловредных клеток.

Неоспоримым является отказ от вредных привычек, таких как курение, употребление алкоголя.

Так как кожа в основном подвергается облучению, необходимо бережно ухаживать за ней, не носить синтетику, не подвергать прямым солнечным лучам. Если пациент обнаруживает какие-то изменения в виде зуда, сухости, покраснения, необходимо сразу обратиться к лечащему врачу и не заниматься самолечением.

Не тратьте время на бесполезный поиск неточной цены на лечение рака

* Только при условии получения данных о заболевании пациента, представитель клиники сможет рассчитать точную цену на лечение.

Обязательно нужен полноценный отдых, прогулки на свежем воздухе. Это укрепит не только физическое здоровье пациента, но и психологическое состояние.

Побочные эффекты лучевой терапии

Не смотря на неоспоримые достоинства радиотерапии, существует ряд побочных эффектов, влияющих на самочувствие:



Переносимость у каждого больного индивидуальная. Все зависит от дозы облучения, состояния кожи, возраста и других показателей. Несмотря на наличие побочных эффектов, лучевая терапия является эффективным методом лечения многих заболеваний. Побочные эффекты через некоторое время после окончания терапии исчезнут, и человек быстро восстановится. Нужно только соблюдать рекомендации врачей.

Противопоказания к лучевой терапии

В ряде случаев лучевую терапию применять не стоит. Таковыми являются:

  1. Интоксикация организма по той или иной причине;
  2. Высокая температура, причина которой должна быть выявлена и по возможности устранена;
  3. Кахексия – когда раковые клетки распространены столь обширно, что лучевая терапия уже неэффективна;
  4. Болезни, связанные с лучевым поражением;
  5. Ряд тяжелых заболеваний;
  6. Тяжелая форма анемии.

Различные слухи о вредности лучевого лечения рака, побочных эффектах, заставляет некоторых людей обращаться к народным целителям. Но многие болезни, особенно онкозаболевания, где лучевая терапия является единственной возможностью для излечения, не могут быть излечены народными средствами, а только зря может быть упущено время. Поэтому не надо верить слухам и домыслам, а лечиться только в специализированных центрах под контролем врачей.

Большинство онкологических больных проходит через процедуру лучевой терапии. Главная ее цель — разрушить раковые клетки, подавить их возможность к размножению. Несмотря на то, что методики проведения облучения за последнее десятилетие значительно усовершенствовались, все-таки здоровые ткани, расположенные радом с опухолью, страдают. Данный метод нельзя назвать совершенно безопасным для здоровья. Однако его эффект в плане уменьшения и уничтожения опухоли в большинстве случаев перекрывает негативные последствия.

Какими могут быть последствия лучевой терапии?

Последствия воздействия излучения зависят от его вида, глубины проникновения в ткани, индивидуальных реакций человека. Чем сильнее и длительнее воздействие, тем заметнее будет и реакция организма. Чаще всего осложнения встречаются у пациентов, которые проходят именно длительное лечение. Не всегда побочные эффекты лучевой терапии бывают тяжелыми, некоторые пациенты переносят такое лечение достаточно легко. В одних случаях последствия развиваются сразу после сеанса, в других только после выписки из больницы, потому что лечебный эффект реализуется и после окончания курса лучевой терапии.

Осложнения после лучевой терапии:

  • Кожные реакции,
  • Боль, отек тканей в месте воздействия,
  • Одышка и кашель,
  • Реакции со стороны слизистых оболочек,
  • Утомляемость,
  • Нарушения настроения и сна,
  • Тошнота, рвота, нарушения в работе желудочно-кишечного тракта,
  • Потеря волос.

Чаще всего возникают кожные реакции

После облучения кожа теряет устойчивость к механическим воздействиям, становится более нежной и чувствительной, требует более бережного отношения и тщательного ухода.

Кожа в облучаемой области меняет цвет, в этом месте ощущается дискомфорт, жжение, болезненность. Реакция кожи на радиацию похожа на солнечный ожог, но развивается она постепенно. Кожа становится более сухой, чувствительной к прикосновениям. Возможно образование волдырей, которые вскрываются, обнажая мокнущий болезненный участок кожи. При отсутствии лечения и правильного ухода такие участки кожи становятся входными воротами для инфекции. На этих местах могут образоваться гнойники. Незаживающие язвы после лучевой терапии развиваются в тяжелых случаях, когда у пациентов особо чувствительная кожа, снижен иммунитет или они страдают сахарным диабетом.

Как правило, кожные реакции проявляются через 10-15 дней после начала лечения и проходят через 4-5 недель после окончания процедур облучения.

Степени поражения кожи в результате лучевой терапии:

  • 1 степень — небольшое покраснение,
  • 2 степень — покраснение, сопровождающееся шелушением или отеком,
  • 3 степень — обширное покраснение с влажным шелушением и сильной отечностью.

Лечение ожогов после лучевой терапии зависит от степени поражения кожи. При первой степени достаточно поддерживать ежедневную гигиену кожи и наносить увлажняющий крем после процедуры облучения. На второй и третьей стадиях при появлении зуда может быть назначен крем с содержанием кортикостероидов, который значительно улучшит состояние кожи. Однако его применение должно быть ограничено по времени (не более 7 дней). Для предотвращения попадания инфекции в рану на нее накладывают повязки. Если появились признаки инфекции, то следует накладывать антибактериальные повязки с активными ионами серебра или йодом.

Признаки инфицирования лучевой раны:

  • Усиление боли,
  • Резкая отечность,
  • Увеличение красноты,
  • Увеличение количества жидкости в ране,
  • Появление неприятного запаха.

Высокая температура после лучевой терапии может быть обусловлена проникновением инфекции в рану. В этом случае необходимо провести дополнительные обследования для установления характера инфекции.

Реакции со стороны дыхательной системы

Одышка, затруднение дыхания, кашель после лучевой терапии развиваются, когда воздействие осуществляется на область грудной клетки, например, при раке молочных желез. Лучевые поражения легких проявляются в течение трех месяцев после облучения. Как правило, кашель является непродуктивным (то есть не приносит облегчения). Если присоединяется инфекция, то возможно повышение температуры и ухудшение общего состояния. Лечение лучевых поражений легких ограничено несколькими методами:

  • Электро- и фонофорез,
  • Магнитотерапия,
  • Ингаляционная терапия,
  • Массаж,
  • Дыхательная гимнастика.

В каждом конкретном случае методы подбираются индивидуально с учетом характера изменений в органах дыхания и характера опухоли, по поводу которой проводится облучение.

При обширном облучении органов брюшной полости и малого таза могут страдать слизистые оболочки кишечника, желудка, мочевого пузыря. В связи с этим ухудшается работа этих органов. Облучение ЛОР-органов может приводить к стоматитам, сухости и першению в горле, болезненным ощущениям в этой области.

Многие онкологические больные отмечают такой побочный эффект лучевой терапии, как утомляемость. Это довольно неприятное состояние. Дело в том, что оно не проходит после сна или отдыха. У больного возникает ощущение, что ему не хватает энергии. Всё это происходит не только из-за действия радиации на организм, но и из-за эмоциональных переживаний, изменений в образе жизни и питании.

Для того, чтобы облегчить состояние, хотя бы немного уменьшить ощущение усталости нужно стараться соблюдать режим, спать достаточное количество времени, заниматься посильными физическими упражнениями. Не стоит выполнять тяжелую работу. Возможно понадобиться попросить о помощи и поддержке друзей или близких.

Как восстановиться после лучевой терапии? Этот вопрос задают практически все пациенты. По окончании курса лечения организм через некоторое время восстанавливает силы, налаживает работу органов, которые пострадали. Если ему помочь, то период восстановления пройдет быстрее.

Обычно после курса лучевой терапии назначают специальные препараты. Строго соблюдайте все рекомендации врача, принимайте лекарства, соблюдая предложенную доктором схему.

Даже если все время хочется прилечь, находите в себе силы двигаться, не давайте организму застаиваться. Движение придаст бодрости. Подойдут легкие простые упражнения, прогулки. Как можно больше времени нужно находиться на свежем воздухе.

Жидкость поможет организму избавиться от шлаков и вредных веществ, образовавшихся в результате лечения. Следует выпивать около 3 литров жидкости. Это могут быть обычная или минеральная вода, соки. Газированные напитки стоит исключить.

Чтобы в организм как можно меньше поступало токсинов, откажитесь от курения и приема алкоголя. Прием алкоголя в небольших дозах (как правило, красное вино) может быть показан только в некоторых случаях. Тогда он рекомендуется лечащим врачом.

Правильное питание поможет организму быстрее «прийти в себя». Пища должна быть натуральной, без консервантов и искусственных добавок. Никаких копченостей, солений не должно быть в рационе. Побольше овощей и зелени.
Избегайте находиться на солнце.

Носите свободную одежду из мягких тканей, чтобы не натиралось место облучения.

Регулярно показывайтесь лечащему врачу. Обязательно сообщите ему о случаях, когда что-то изменилось в самочувствии, стала беспокоить боль или поднялась температура.

Лечение онкологических заболеваний для многих больных становится настоящим испытанием ввиду серьезных побочных эффектов. Однако наступает день, когда человек чувствует облегчение. Он понимает, что болезнь отступает, и жизнь налаживается.

Диффузионный потенциал

В электрохимических цепях на границах раздела между неодинаковыми растворами электролитов возникают скачки потенциала. Для двух растворов с одинаковым растворителем такой скачок потенциала называется диффузионным потенциалом. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор 1 -- отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета цд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (б1б2)

где и -- предельные молярные электрические проводимости ионов. Величина цд мала и в большинстве случаев не превышает нескольких десятков милливольт.

ЭДС электрохимической цепи с учетом диффузионного потенциала

……………………………….(29)

Уравнение (29) используется для расчета (или) по результатам измерения Е, если известны (или) и. Поскольку определение диффузионного потенциала связано с существенными экспериментальными трудностями, то при измерениях ЭДС удобно устранить с помощью солевого мостика. Последний содержит концентрированный раствор электролита, молярные электрические проводимости ионов которого приблизительно одинаковы (KCl, KNO3). Солевой мостик, в котором содержится, например, КС1, располагают между растворами электрохимической цени, и вместо одной жидкостной границы в системе возникают две. Так как концентрация ионов в растворе КС1 значительно выше, чем в соединяемых им растворах, то практически только ионы K+ и С1- диффундируют через жидкостные границы, на которых возникают очень малые и обратные по знаку диффузионные потенциалы. Их суммой можно пренебречь.,

Строение двойного электрического слоя

Переход заряженных частиц через границу раствор -- металл сопровождается возникновением на этой границе двойного электрического слоя (д.э.с) и скачка потенциала. Двойной электрический слой создается электрическими зарядами, находящимися на металле, и ионами противоположного заряда (противоионами), ориентированными в растворе у поверхности электрода.

В формировании ионной обкладки д.э.с. принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых д.э.с. приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл -- раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите.

Строение двойного электрического слоя в отсутствие специфической адсорбции. Под строением д.э.с. понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части: 1) плотную, или гельмгольцевскую, образованную ионами, практически вплотную подошедшими к металлу; 2) диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона (рис. 1). Толщина плотной части порядка 10-8 см, диффузной -- 10-7--10-3 см. Согласно закону электронейтральности

……………………………..(30)

где, - плотность заряда со стороны металла, со стороны раствора, в плотной диффузионной части д.э.с. соответственно.

Рис.1. Строение двойного электрического слоя на границе раствор - металл.: аб - плотная часть;бв - диффузная часть

Распределение потенциала в ионной обкладке двойного электрического слоя, отражающее его строение, представлено на рис.2. Величина скачка потенциала ц на границе раствор -- металл соответствует сумме величин падения потенциала в плотной части д.э.с и -- в диффузной. Строение д.э.с. определяется общей концентрацией раствора, С ее ростом диффузия противоиоиов от поверхности металла в массу раствора ослабляется, в результате чего сокращаются размеры диффузной части. Это приводит к изменению -потенциала. В концентрированных растворах диффузная часть практически отсутствует, и двойной.электрический слой подобен плоскому конденсатору, что соответствует модели Гельмгольца, впервые предложившего теорию строения д.э.с..


Рис.1. Распределение потенциала в ионной обкладке при различной концентрации раствора: аб - плотная часть; бв - диффузная часть; ц - разность потенциалов между раствором и металлом; ш,ш1 - падение потенциала в плотной и диффузной частях д.э.с.

Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция - концентрирование вещества из объема фаз на поверхности раздела между ними - может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину -потенциала (рис.3). Кривая 1 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения потенциала в двойном слое видно, что -потенциал изменяется при адсорбции катионов и может иметь знак, противоположный знаку потенциала электрода.

Рис.3.

Эффект специфической адсорбции наблюдается и на незаряженной поверхности металла, т.е. в тех условиях, когда обмен ионами между металлом и раствором отсутствует. Адсорбированные ионы и соответствующие противоионы образуют двойной электрический слой, расположенный в непосредственной близости к металлу со стороны раствора. Ориентированные около поверхности металла адсорбированные полярные молекулы (ПАВ, растворителя) также создают двойной электрический слой. Скачок потенциала, отвечающий двойному электрическому слою при незаряженной поверхности металла, называется потенциалом нулевою заряда (ц.н.з.).,,

Потенциал нулевого заряда определяется природой металла и составом электролита. При адсорбции катионов п.н.з. становится более положительным, анионов -- более отрицательным. Потенциал нулевого заряда является важной электрохимической характеристикой электродов. При потенциалах, близких к п.н.э., некоторые свойства металлов достигают предельных значений: велика адсорбция ПАВ, максимальна твердость, минимальна смачиваемость растворами электролитов и др.

Результаты исследований в области теории двойного электрического слоя позволили более широко рассмотреть вопрос о природе скачка потенциала на границе раствор -- металл. Этот скачок обусловлен следующими причинами: переходом заряженных частиц через границу раздела (), специфической адсорбцией ионов () и полярных молекул (). Гальвани-потенциал на границе раствор -- металл можно рассматривать как сумму трех потенциалов:

……………………………..(31)

В условиях, при которых обмен заряженными частицами между раствором и металлом, а также адсорбция ионов не происходят, все же остается скачок потенциала, вызванный адсорбцией молекул растворителя, -- . Гальвани-потенциал может быть равен нулю только тогда, когда, и компенсируют друг друга.

В настоящее время нет прямых экспериментальных и расчетных методов определения величин отдельных скачков потенциала на границе раздела раствор -- металл. Поэтому вопрос об условиях, при которых скачок потенциала обращается в нуль (так называемый абсолютный нуль потенциала), остается пока открытым. Однако для решения большинства электрохимических задач знание отдельных скачков потенциалов не обязательно. Достаточно пользоваться значениями электродных потенциалов, выраженными в условной, например водородной, шкале.

Строение двойного электрического слоя не отражается на термодинамических свойствах равновесных электродных систем. Но при протекании электрохимических реакций в неравновесных условиях ионы испытывают влияние электрического поля двойного слоя, что приводит к изменению скорости электродного процесса.

Практически измеренное точное значение ЭДС обычно отличается от теоретически рассчитанного по уравнению Нернста на некоторую малую величину, которая связана с разностями потенциалов, возникающими в месте контакта различных металлов (“контактный потенциал”) и различных растворов (“диффузионный потенциал”).

Контактный потенциал (точнее, контактная разность потенциалов) связан с различным значением работы выхода электрона для каждого металла. При каждой данной температуре он является постоянным для данного сочетания металлических проводников гальванического элемента и входит в ЭДС элемента как постоянное слагаемое.

Диффузионный потенциал возникает на границе между растворами различных электролитов или одинаковых электролитов с различной концентрацией. Его возникновение объясняется различной скоростью диффузии ионов из одного раствора в другой. Диффузия ионов обусловлена различным значением химического потенциала ионов в каждом из полуэлементов. Причем её скорость изменяется во времени из-за непрерывного изменения концентрации, а значит, и m . Поэтому диффузионный потенциал имеет, как правило, неопределённое значение, так как на него влияют многие факторы, в том числе и температура.

При обычных практических работах значение контактного потенциала сводят к минимуму применением монтажа проводниками, изготовленными из одного и того же материала (обычно меди), а диффузионного потенциала - использованием специальных устройств, называемых электролитическими (солевыми )мостиками или электролитическими ключами. Они представляют собой трубки различной конфигурации (иногда снабженные кранами), заполненные концентрированными растворами нейтральных солей. У этих солей подвижности катиона и аниона должны быть приблизительно равны друг другу (Например, KCl, NH 4 NO 3 и т. п.). В простейшем случае электролитический мостик может быть изготовлен из полоски фильтровальной бумаги или асбестового жгутика, смоченных раствором KCl. При использовании электролитов на основе неводных растворителей в качестве нейтральной соли обычно применяется хлорид рубидия.

Достигнутыми в результате принятых мер минимальными значениями контактного и диффузного потенциалов обычно пренебрегают. Однако при электрохимических измерениях, требующих большой точности, контактный и диффузионный потенциалы следует учитывать.

То обстоятельство, что в данном гальваническом элементе имеется электролитический мостик, отображается двойной вертикальной чертой в его формуле, стоящей в месте контакта двух электролитов. Если же электролитический мостик отсутствует, то в формуле ставится одиночная черта.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: