Современная вирусология. Исследовательская работа "вирусология в будущем". После завершения прогревания ног их необходимо одномоментно окунуть в холодную воду или окатить холодной водой из кувшина. Чем холоднее вода - тем сильнее эффект. Если этого не сде

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОМСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

КАФЕДРА ОБЩЕСТВЕННОГО ЗДОРОВЬЯ И ЗДРАВООХРАНЕНИЯ

Курсовая работа

Возникновение вирусологии. Д. И. Ивановский 1892 г

Выполнила студентка

педиатрического факультета гр.№134

Бектурова А.Р.

Проверил ассистент кафедры

Расный В. И.

Введение

1.Ивановский Д. И.

2.Вирус табачной мозаики

3.Вирусология как наука:

3.1 История возникновения

3.3 Полиомиелит

Список литературы

Введение

В наше время очень актуально проблема вирусов. Она привлекает внимание все большего числа ученых. Когда стало известно о существовании вирусов, никто и не подозревал, что они будут так опасны. Тысячи людей сейчас заражены такими опасными вирусами заболеваниями как СПИД, рак, но не только люди болеют вирусными инфекциями, также растения и животные, и это проблема всего человечества. Вирусы имеют способность видоизменяться, приобретать новые качества, вследствие чего возникают новые, неизвестные науке, вирусы (вирус иммунодефицита человека, грипп птиц и другие). Этой проблемой занимается наука вирусология.

Вирусология сегодня - активно развивающаяся наука, которая использует самые современные открытия и технологии. Её теоретическое и практическое значение для медицины, ветеринарии, сельского хозяйства - огромно. Необходимо не только изучение вирусов, но и поиски новых эффективных методов борьбы с ними. На вирусах изучаются вопросы генетики микробов и актуальные проблемы биохимии. Учёные всё более глубоко и успешно познают тончайшую структуру, биохимический состав и физиологические свойства этих ультрамикроскопических живых существ, их роль в природе, жизни человека, животного и растений. Развитие вирусологии связано с блестящими успехами молекулярной генетики. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации. Вирусы широко применяются в работах генной инженерии. Способность вирусов приспосабливаться, вести себя непредсказуемо - не знает предела.

Миллионы людей стали жертвами вирусов - возбудителей различных болезней. И всё-таки основные успехи вирусологии достигнуты в борьбе с конкретными болезнями и это даёт основание утверждать, что в нашем третьем тысячелетии вирусология займёт ведущее место.

В своей работе я хочу отразить важные моменты, связанные с возникновением этой важной для человечества науки, ее цели и задачи, а также проблемы вирусологии, с которыми борются ученые всего мира. Я расскажу об основателе вирусологии Д. И. Ивановском и о других ученых, внесших вклад в развитие вирусологии.

1. Ивановский Д. И

Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих веков нанесли вред хозяйству и вред здоровью человека. Хотя многие из этих болезней были опасны, но пробы установить их причину и найти возбудителя оставались безуспешными.

В первый раз существование вируса (нового типа возбудителя болезней) доказал в 1892 году российский ученый Д.И. Ивановский.

Дмитрий Иосифович родился в 1864 году в Петербургской губернии. Окончил гимназию с отличием. В августе 1883 года он поступает в Петербургский университет на физико-математический факультет. С 1890 - ассистент ботанической лаборатории Петербургской Академии Наук. В 1895 году защитил магистерскую диссертацию и в качестве приват-доцента Петербургского университета, начал чтение лекций по физиологии низших организмов, а с 1896 - по анатомии и физиологии растений. С 1901-экстраординарный профессор, а с 1903 - ординарный профессор Варшавского университета. В Варшаве Ивановский одновременно преподавал на Высших женских курсах.

Ивановский положил начало вирусологии, выросшей в настоящее время в самостоятельную область науки. Открытие вирусов сыграло огромную роль в развитии ряда научных дисциплин: биологии, медицины, ветеринарии и фитопатологии. Оно позволило расшифровать этиологию таких заболеваний, как бешенство, оспа, энцефалиты и мн. др. Ивановский занимался также изучением процесса спиртового брожения и влияния на него кислорода, хлорофилла и др. пигментов зеленых листьев, участвующих в процессе фотосинтеза. Известны также его работы и по общей сельскохозяйственной микробиологии. Ивановский был дарвинистом, подчеркивал зависимость организмов от условий окружающей среды и доказывал эволюционное значение этого факта.

В дальнейшем Ивановским было проведено научное исследование воздушного питания растений, он сосредоточил свое внимание на изучении состояния хлорофилла растений, значении каротина и ксантофилла для растений, устойчивости хлорофилла к свету в живом листе и второго максимума ассимиляции. Эти исследования Ивановский проводил совместно с М.С. Цветом - создателем метода адсорбированного хроматографического анализа.

В 1915 году Варшавский университет был эвакуирован в Ростов-на-Дону. Эвакуация не позволила перевести лабораторию, которую Ивановский в течение многих лет создавал в Варшаве. В это трудное для страны время Ивановскому пришлось все заново организовывать. Работая в Донском университете, Ивановский участвовал в его общественной жизни, как председатель отделения биологии Общества естествоиспытателей природы.

Наряду с работами Ивановского по вирусологии, принесшими ему мировую известность, он проводил и другие исследования. Он автор 180 публикаций, в том числе ряда работ в области почвенной микробиологии, физиологии и анатомии растений, 30 статей в энциклопедическом словаре Брокгауза и Эфрона и двухтомный учебник по физиологии растений.

В знак признания выдающихся заслуг Д.И. Ивановского перед вирусологической наукой Институту вирусологии АМН СССР (ныне РАМН) в 1950 году было присвоено его имя, в Академии медицинских наук учреждена премия имени Ивановского, которая присуждается один раз в три года за лучшую научную работу по вирусологии.

В 1964 году проведена научная юбилейная сессия, выпущена юбилейная медаль, которой были удостоены ученые и деятели науки, внесшие вклад в развитие вирусологии, а также юбилейная марка с изображением Д.И. Ивановского. В конце 70-х годов перед зданием Института вирусологии установлен бюст Д.И. Ивановского.

Д.И.Ивановский скончался в возрасте 56 лет 20 июня 1920 года от цирроза печени. Похоронен он в Ростове-на-Дону на Новопоселенском кладбище, где ему установлен монумент. На доме N-87 по Социалистической улице, где жил ученый, укреплена мемориальная доска с надписью: ”В этом доме жил наикрупнейший российский ученый, основоположник науки о вирусах Дмитрий Иосифович Ивановский (появился в 1864 году; погиб в 1920 году).

2. Вирус табачной мозаики

Под влиянием выдающихся деятелей науки, преподававших в то время в Петербургском институте (И.М.Сеченов, А.М. Бутлеров, В.В. Докучаев А.Н. Бекетов, А.С. Фамицын и остальные), формировалось мировоззрение грядущего ученого.

Будучи студентом, Д.И. Ивановский c увлечением работал в научном биологическом кружке, проводил опыты по анатомии и физиологии растений, тщательно выполняя опыты.

Поэтому, возможно, А.Н. Бекетов, возглавлявший общество естествоиспытателей, и доктор А.С. Фамицын предложили в 1887 году студентам Ивановскому и Половцову поехать на Украину и в Бессарабию для исследования заболевания табака, наносившего большой вред сельскому хозяйству юга России.

Главные итоги наблюдений и изучения анатомии и физиологии больных растений были доложены Д. И. Ивановским в 1888 году на заседании С. Петербургского общества естествоиспытателей и изложены в статье Д. И. Ивановского и В. В. Половцева.

В итоге этих наблюдений Д.И. Ивановский и В.В. Половцев в первый раз высказали предположение, что заболевание табака, описанное в 1886 году А. Майер в Голландии под заглавием мозаичной, представляет не одно, а два совсем разных заболевания одного и того же растения; одно из них -рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. На базе опыта фермеров, собственных наблюдений и исследования больных растений Д.И.Ивановский и В.В.Половцев пришли к заключению, что заболевание рябуха поражает растения, высаженные на старых плантациях табака, и дали рекомендации по введению севооборота и увеличению культуры земледелия.

Исследования мозаичной болезни табака Д.И.Ивановский продолжает в Никитском ботаническом саду (под Ялтой) и ботанической лаборатории Академии. Результаты этих исследований изложены в докладе “О двух болезнях табака”, сделанном 14 февраля 1892 года в Академии наук, и опубликованы в журнальчике “Сельское хозяйства и лесоводств”, а также отдельным изданием “О двух болезнях табака”. В данной работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичное заболевание табака вызывается бактериями, проходящими через фильтр Шамберлана, которые не способны расти на искусственных субстратах. В первый раз представлены данные о возбудителе табачной мозаики, которые долгое время являлись критериями для отнесения возбудителей болезней к ”вирусам”: фильтруемость через ”бактериальные” фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобожденным от микробов и грибов. Возбудитель мозаичной болезни именуется Д. И. Ивановским то фильтрующимися бактериями, то микроорганизмами, и это понятно, так как сконструировать сходу существование особенного мира вирусов было очень тяжело.

В связи с завершением собственной магистерской диссертации “Исследования спиртового брожения” Д.И. Ивановский обязан был временно прекратить исследования по мозаичной болезни табака и возвращается к ним через несколько лет, закончив к 1900 году.

Основываясь на бессчетных опытах и повторных исследованиях, развивая главные положения, опубликованные в 1892 году, он обобщает их в докторской диссертации на тему “мозаичное заболевание табака”, которую он защитил в Киевском институте 16 марта 1903 года.

Д.И. Ивановский не сомневался в значимости собственного открытия принципиально нового класса явлений. Подчеркивая, что возбудитель мозаичной болезни табака не мог быть найден в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах. Д.И. Ивановский писал, что его догадки о живой и организованной природе возбудителя формировано в целую теорию особенного рода инфекционных заболеваний, представителем которых, кроме табачной мозаики, является ящур. Кроме капитальных выводов, утверждающих существование нового, неизвестного ранее класса микроорганизмов, дающих критерии и способы для их определения, т.е. закладывающих базы научной дисциплины, получившей заглавие вирусологии, в диссертации Ивановского содержатся и остальные принципиальные данные. Так, в главе 4 описывается цитопатическое действие возбудителя табачной мозаики; в данной же главе и приложенных микрофотографиях дана черта кристаллов, которые в 1935 году были идентифицированы как кристаллы вируса табачной мозаики. Тут же имеется описание внутриклеточных включений, положившее начало учению о включениях при вирусных инфекциях, которые и в настоящее время сохранило свое значение для диагностики вирусных.

Д.И.Ивановский открыл вирусы - новую форму существования жизни. Своими исследованиями он заложил базы ряда научных направлений вирусологии: исследование природы вирусов, цитопатология вирусных инфекций, фильтрующихся форм микроорганизмов, хронического и латентного вирусоносительства. Один из выдающихся русских фитовирусологов В.Л.Рыжков писал: ”Заслуги Ивановского не лишь в том, что он открыл совсем новый вид заболевания, но и что он дал способы их исследования, явился основоположником патологоанатомического способа исследования болезней растений и патологической цитологии вирусных заболеваний”. Всемирно узнаваемый американский ученый лауреат Нобелевской премии Стенли дал высшую оценку исследованиям Ивановского: ”Право Ивановского на славу растет с годами. Я считаю, что его отношении к вирусам обязано рассматриваться в том же свете, как мы смотрим на отношении Пастера и Коха к бактериям”.

Прямыми продолжателями Ивановского в исследовании вирусных болезней табака являются В.Л. Рыжков, К.С. Сухов, И.П. Худына, М.С. Терновский, П.А. Агатов, М.И. Гольдин и остальные.

3. Вирусология как наука

3.1 История возникновения

Первая половина нашего столетия была посвящена пристальному исследованию вирусов - возбудителей острых лихорадочных заболеваний, разработке способов борьбы с этими заболеваниями и способов их предупреждения.

Открытия вирусов сыпались как из рога изобилия: в 1892 году был открыт вирус табачной мозаики - год рождения вирусологии как науки; 1898 году - открыт вирус ящура,1901 году - вирус желтой лихорадки,1907 году -вирус натуральной оспы, 1909 году - вирус полиомиелита, 1911 году - вирус саркомы Рауса, 1912 году - вирус герпеса, 1926 году - вирус везикулярного стоматита, 1931 году- вирус гриппа свиней и вирус западного энцефаломиелита лошадей,1933 году- вирус гриппа человека и вирус восточного энцефаломиелита лошадей, 1934 году- вирус японского энцефалита и вирус паротита, 1936 году - вирус рака молочных желез мышей, 1937году-вирус клещевого энцефалита, 1945 году - вирус крымской геморрагической лихорадки, 1948 году- вирусы Коксаки, 1951 году - вирусы лейкоза мышей и вирусы ЕСНО, 1953 году - аденовирусы и вирус бородавок человека, 1954 году - вирус краснухи и вирус кори, 1956 году - вирусы парагриппа, вирус цитомегалии и респираторно-синцитиальный вирус, 1957 году- полиомы, 1959 году - вирус аргентинской геморрагической лихорадки, 1960 году- риновирусы.

Поэтому первая половина нашего столетия поистине оказалась эпохой великих вирусологических открытий. И это вполне понятно и оправдано, так как первый шаг в борьбе с болезнью - это выяснение её предпосылки. И вирусы оказали в конце концов человечеству неоценимую услугу в борьбе сначала с вирусами и другими инфекционными заболеваниями.

Тысячелетия назад, когда люди не имели понятия о вирусах, страшные болезни, вызванные ими, заставляли находить пути избавления от них. Еще 3500 лет назад в старом Китае было подмечено, что люди, перенесшие легкую форму оспы, в дальнейшем никогда больше ею не заболевали. Боясь утяжеленной формы данной болезни, древние решили искусственно заражать детей легкой формой оспы. Этот способ предупреждения - вариоляция - не получил широкого распространения. Смертность среди привитых достигала 10%. При прививках было тяжело дозировать заразный материал от больного. Неувязка предохранения от оспы была решена лишь в конце 18 века английским врачом Эдвардом Дженнером. Он установил, что некие доярки никогда не болеют оспой, а, конкретно, те из них, которые предварительно перенесли легкое заболевание - коровью оспу, либо, как её называли, вакцину (от греческого vacca, что значит “корова”).

Джиннер в 1796 году провел опыт по прививке содержимого пустулы с руки доярки на кожу плеча 8-летнего мальчика Джемса Фиппса. На месте прививки разилось только несколько пузырьков. Через полтора месяца Дженнер ввел Фиппсу гнойное содержимое кожного пузырька от больного натуральной оспы. Мальчик не заболел. Вакцина против оспы оказалась первой противовирусной вакциной, хотя вирус натуральной оспы был открыт 57 лет спустя.

В борьбе с вирусными заболеваниями ученые стремились до этого всего найти и выделить возбудителя. Изучив его характеристики, приступали к приготовлению вакцины. Так в борьбе за здоровье и жизнь человека становилась юная наука о вирусах.

3.2 Вирус гриппа человека

Грипп (от фр. grippe) - острое инфекционное заболевание дыхательных путей, вызываемое вирусом гриппа. Входит в группу острых респираторных вирусных инфекций (ОРВИ). Периодически распространяется в виде эпидемий и пандемий. В настоящее время выявлено более 2000 вариантов вируса гриппа, различающихся между собой антигенным спектром. По оценкам ВОЗ от всех вариантов вируса во время сезонных эпидемий в мире ежегодно умирают от 250 до 500 тыс. человек (большинство из них старше 65 лет), в некоторые годы число смертей может достигать миллиона. Предположительно, название болезни происходит от немецкого слова «Grips», что означает глотка, горло или от английского слова «grip» скрутить, схватить (о болезни). Русское слово «хрип» происходит от латинского слова crepitatio (crepito, crepo - трещать, скрипеть, щелкать) - звуки, издаваемые больными, и непосредственного отношения к слову грипп не имеет (русские слова в которых есть буква Х и Ф русскими не считаются) и перешло в русский язык от старофранцузского «grippe».

Нередко словом «грипп» в обиходе также называют любое острое респираторное заболевание (ОРВИ), что ошибочно, так как кроме гриппа на сегодняшний день описано еще более 200 видов других респираторных вирусов (аденовирусы, риновирусы, респираторно-синцитиальные вирусы и др.), вызывающих гриппоподобные заболевания у человека.

Для профилактики гриппа Центры по контролю и профилактике заболеваний США рекомендуют вакцинировать всех лиц старше 6 месяцев (особенно входящих в группы риска), применять средства индивидуальной защиты, сократить контакты с заболевшими, применять противовирусные препараты по назначению врача.

К гриппу восприимчивы все возрастные категории людей. Источником инфекции является больной человек с явной или стёртой формой болезни, выделяющий вирус с кашлем, чиханьем и т. д. Больной заразен с первых часов заболевания и до 5-7-го дня болезни. Характеризуется аэрозольным (вдыхание мельчайших капель слюны, слизи, которые содержат вирус гриппа) механизмом передачи и чрезвычайно быстрым распространением в виде эпидемий и пандемий. Эпидемии гриппа, вызванные серотипом А, возникают примерно каждые 2-3 года, а вызванные серотипом В - каждые 4-6 лет. Серотип С не вызывает эпидемий, только единичные вспышки у детей и ослабленных людей. В виде эпидемий встречается чаще в осенне-зимний период. Периодичность эпидемий связана с частым изменением антигенной структуры вируса при пребывании его в естественных условиях. Группами высокого риска считаются дети, люди преклонного возраста, беременные женщины, люди с хроническими болезнями сердца, лёгких.

3.3 Полиомиелит

Полиомиелит - детский спинномозговой паралич, острое, высоко контагиозное инфекционное заболевание, обусловленное поражением серого вещества спинного мозга полиовирусом и характеризующееся преимущественно патологией нервной системы. В основном, протекает в бессимптомной или стертой форме. Иногда случается так, что полиовирус проникает в ЦНС, размножается в мотонейронах, что приводит к их гибели, необратимым парезам или параличам иннервируемых ими мышц.

Источником инфекции является больной или вирусоноситель, при этом наиболее опасны пациенты со стёртыми и абортивными формами заболевания. Инфекция передаётся фекально-оральным (грязные руки, игрушки, инфицированные продукты питания) и воздушно-капельным путём. Восприимчивость к вирусу полиомиелита всеобщая, однако наиболее восприимчивы дети в возрасте до 7 лет. При этом паралитическая форма встречается не более, чем в 1% случаев, а стёртые, инаппарантные и абортивные формы диагностируются только в очаге инфекции при лабораторном обследовании контактных с заболевшими полиомиелитом лиц. Дети первых 2-3 месяцев жизни, благодаря полученному трансплацентарно от матери иммунитету, полиомиелитом практически не болеют. Повторные случаи заболевания практически не регистрируются, так как после перенесенного заболевания вырабатывается стойкий иммунитет и наблюдается невосприимчивость клеток слизистой оболочки кишечника к гомологичным типам вируса. вирус инфекционный грипп полиомиелит

Хотя сейчас полиомиелит редко встречается в западном мире, он все ещё эндемичен для Южной Азии и Нигерии. После широкого применения полиомиелитной вакцины в середине 1950-х годов, заболеваемость полиомиелитом резко сократилось во многих промышленно развитых странах. А в 1988 году под руководством Всемирной организации здравоохранения, ЮНИСЕФа и Ротари Интернешнл были сделаны глобальные усилия по искоренению полиомиелита. Эти усилия привели к сокращению числа ежегодных диагностированных случаев на 99%. По оценкам, число случаев заболеваемости снизилось с 350 000 в 1988 году до 483 случаев в 2001 году, после чего она осталась на уровне около 1000 случаев в год (1606 в 2009 году). В настоящее время полиомиелит является одним из, всего лишь, двух заболеваний, ставших предметом программы глобальной ликвидации, другой болезнью является ришта.

Распространение ВИЧ-инфекции связано, главным образом, с незащищенными половыми контактами, использованием зараженных вирусом шприцев, игл и других медицинских и парамедицинских инструментов, передачей вируса от инфицированной матери ребёнку во время родов или при грудном вскармливании. В развитых странах обязательная проверка донорской крови в значительной степени сократила возможность передачи вируса при её использовании.

Попадая в организм человека, ВИЧ заражает CD4+ лимфоциты, макрофаги и некоторые другие типы клеток. Проникнув в клетки указанных типов, вирус начинает активно в них размножаться. Это в конечном счёте приводит к разрушению и гибели зараженных клеток. Присутствие ВИЧ со временем вызывает нарушение иммунной системы из-за избирательного уничтожения им иммунокомпетентных клеток и подавления их субпопуляции. Вышедшие из клетки вирусы внедряются в новые, и цикл повторяется. Постепенно число CD4+ лимфоцитов снижается настолько, что организм уже не может противостоять возбудителям оппортунистических инфекций, которые не опасны или мало опасны для здоровых людей с нормально функционирующей иммунной системой.

Своевременно начатое лечение антиретровирусными препаратами (ВААРТ) останавливает прогрессию ВИЧ-инфекции и снижает риск развития СПИД до 0,8-1,7 %. Однако антиретровирусные препараты широко доступны только в развитых и некоторых развивающихся (Бразилия) странах по причине их высокой цены.

Пандемия ВИЧ-инфекции является одной из наиболее губительных эпидемий в истории человечества.

До настоящего времени не разработано лечения ВИЧ-инфекции, которое могло бы устранить ВИЧ из организма.

Современный способ лечения ВИЧ-инфекции (т. н. высокоактивная антиретровирусная терапия) замедляет и практически останавливает прогрессирование ВИЧ-инфекции и её переход в стадию СПИД, позволяя ВИЧ-инфицированному человеку жить полноценной жизнью. При использовании лечения и при условии, что эффективность лекарств сохраняется, продолжительность жизни человека ограничивается не ВИЧ, а лишь естественными процессами старения. Однако после длительного использования одной и той же схемы терапии, через несколько лет, вирус мутирует, приобретая резистентность к применяемым препаратам, и для дальнейшего контроля над прогрессированием ВИЧ-инфекции необходимо применять новые схемы лечения с другими препаратами. Поэтому любая существующая на сегодняшний день схема лечения ВИЧ-инфекции рано или поздно становится неэффективной. Также, во многих случаях, пациент не может принимать отдельные препараты по причине индивидуальной непереносимости. Поэтому грамотное применение терапии отсрочивает развитие СПИД на неопределенное время. На сегодняшний день появление новых классов препаратов в основном нацелено на уменьшение побочных эффектов от приема терапии, поскольку продолжительность жизни ВИЧ-положительных людей, принимающих терапию, практически сравнялась с продолжительностью жизни ВИЧ-отрицательного населения. В период более позднего развития ВААРТ (2000-2005 гг.) выживаемость ВИЧ-инфицированных больных при исключении больных с гепатитом С достигает 38,9 лет (37,8 - для мужчин и 40,1 - для женщин.)

Важное значение придается поддержанию здоровья ВИЧ-положительного немедикаментозными средствами (правильное питание, здоровый сон, избегание сильных стрессов и длительного нахождения на солнце, здоровый образ жизни), а также регулярный (2-4 раза в год) мониторинг состояния здоровья у врачей-специалистов по ВИЧ.

Подводя результат, можно заключить: вирусология не только занимает достойное место посреди базовых наук, как учение о вирусах, но и является в значимой мере медицинской наукой.

Список литературы

1) Ивановский Д.И. О двух болезнях табака -М., Медгиз, 1949 - 181 с.

2) Хаитов Р. М. СПИД. - М.: Издательство Народной академии культуры и общечеловеческих ценностей, 1992

3) Малый В. П. ВИЧ. СПИД. Новейший медицинский справочник. - М.: Эксмо, 2009.

4) Жданова В.М., Гайдамович С.Я. Общественная и частная вирусология Изд. Медицина, М., 1982 Г. С. 5-11.

5) Ивановский Д.И. Половцев В.В. Рябуха - заболевание табака, её предпосылки и средства борьбы с нею - С-Пб., 1890 г.

Размещено на Allbest.ru

Подобные документы

    Открытие первого вируса, поражающего человека, его проникновение в клетку. Этапы развития вирусологии. Использование лабораторных мышей и куриных эмбрионов для культивирования вирусов. Строение и химический состав вириона. Выход вирионов из клетки.

    презентация , добавлен 17.01.2014

    Виды гриппа - острого инфекционного заболевания дыхательных путей. Строение и распространение вируса гриппа, история эпидемий заболевания, его патогенез, клиническая картина, возможные осложнения. Профилактика и существующие методы лечения гриппа.

    курсовая работа , добавлен 10.11.2011

    Изучение вируса табачной мозаики. Горизонтальный перенос генов. Электронная микрофотография бактериофагов, инфицирующих клетку. Определение вич-инфекции, его влияние на иммунную систему организма человека. Классификация и особенность строения вирусов.

    презентация , добавлен 05.12.2014

    Сущность понятия "вирус", история изучения. Схематическое строение вируса. Классификация вирусов: дезоксивирусы, рибовирусы. Схематичное изображение расположения капсомеров в капсиде вирусов. Вирус иммунодефицита человека, трехмерное изображение.

    презентация , добавлен 19.10.2011

    Структура и свойства вирусов гриппа, их антигенная изменчивость. Международная система кодировки вирусов. Разброс аэрозольных частиц при чихании. Симптомы заболевания и его клиническая диагностика. Осложнения и последствия гриппа. Статистика заболевания.

    реферат , добавлен 15.02.2014

    Таксономическое положение вируса гриппа, его диагностика. Основные биологические свойства возбудителя. Методы активной иммунизации против гриппа. Особенности микробиологической диагностики. Специфика этиотропной терапии и специфической профилактики.

    контрольная работа , добавлен 28.02.2012

    презентация , добавлен 14.05.2014

    Клиника полиомиелита, выделение вируса из верхних и нижних отрезков пищеварительного тракта, смывов носоглотки и кишечника. Биологические свойства вирусов, патогенез поражения нервной системы при полиомиелите. Особенности абортивной формы полиомиелита.

    реферат , добавлен 09.05.2010

    реферат , добавлен 09.05.2010

    Причастность фармацевтических компаний к массовой панике, связанной с эпидемией свиного гриппа. Генетически модифицированный вирус. Не так страшен грипп, как его вакцина. Статистика массовых заболеваний. Советы по профилактике и лечению сезонного гриппа.


Введение

Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

Вирусология решает фундаментальные и прикладные задачи и тесно связана с другими науками. Открытие и изучение вирусов, в частности бактериофагов, внесло огромный вклад в становление и развитие молекулярной биологии. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой. Вирусы не только предмет изучения, но и инструмент молекулярно-генетических исследований, что связывает вирусологию с генетической инженерией. Вирусы - возбудители большого количества инфекционных заболеваний человека, животных, растений, насекомых. С этой точки зрения вирусология тесно связана с медициной, ветеринарией, фитопатологией и другими науками.

Возникнув в конце XIX века как ветвь патологии человека и животных, с одной стороны, и фитопатологии - с другой, вирусология стала самостоятельной наукой, по праву занимающей одно из основных мест среди биологических наук.

Глава 1. История вирусологии

1.1. Открытие вирусов

Вирусология - молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

История вирусологии необычна тем, что один из ее предметов - вирусные болезни - стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии - это борьба с инфекционными заболеваниями и только впоследствии - постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера (1749-1823 гг.) по предупреждению оспы и работы Луи Пастера (1822-1895 гг.) с возбудителем бешенства.

С незапамятных времен оспа была бичом человечества, унося тысячи жизней. Описания оспенной заразы встречаются в рукописях древнейших китайских и индийских текстов. Первые упоминания об эпидемиях оспы на европейском континенте датируются VI столетием нашей эры (эпидемия среди солдат эфиопской армии, осаждавшей Мекку), после чего наблюдался необъяснимый период времени, когда упоминания об эпидемиях оспы отсутствовали. Оспа снова начала гулять по континентам в XVII веке. Например, в Северной Америке (1617-1619 гг.) в штате Массачусетс погибло 9/10 населения, в Исландии (1707 г.) после эпидемии оспы от 57 тыс. человек осталось только 17 тыс., в г. Истхем (1763 г.) от 1331 жителя осталось 4 человека. В связи с этим, проблема борьбы с оспой стояла очень остро.

Методика предупреждения оспы через прививку, называемая вариоляцией, была известна с давних времен. Упоминания о применении вариоляции в Европе датируются серединой 17-го века со ссылками на более ранний опыт применения в Китае, на Дальнем Востоке, в Турции. Суть вариоляции заключалась в том, что содержимое пустул от пациентов, болевших легкой формой оспы, вносили в маленькую ранку на коже человека, что вызывало легкое заболевание и предупреждало острую форму. Однако при этом сохранялась большая опасность заболевания тяжелой формой оспы и смертность среди привитых достигала 10%. Дженнер совершил переворот в методике предупреждения оспы. Он первый обратил внимание на то, что люди, переболевшие коровьей оспой, которая протекала легко, впоследствии никогда не болели оспой. 14 мая 1796 г. Дженнер внес в ранку Джеймса Фипса, никогда не болевшего оспой, жидкость из пустул больной коровьей оспой доярки Сары Селмес. На месте искусственной инфекции у мальчика появились типичные пустулы, которые через 14 дней исчезли. Тогда Дженнер внес в ранку мальчика высокоинфекционный материал из пустул больного оспой. Мальчик не заболел. Так зародилась и подтвердилась идея вакцинации (от латинского слова vacca - корова). Во времена Дженнера вакцинация понималась как внесение инфекционного материала коровьей оспы в организм человека с целью предотвращения заболевания натуральной оспой. Термин вакцина применяли к веществу, предохранявшему от оспы. С 1840 г. противооспенную вакцину стали получать заражением телят. Вирус оспы человека был открыт только в 1904 г. Таким образом, оспа - это первая инфекция, против которой была применена вакцина, т. е. первая управляемая инфекция. Успехи в вакцинопрофилактике черной оспы привели к ее искоренению в мировом масштабе.

В наше время вакцинация и вакцина употребляются как общие термины, обозначающие прививку и прививочный материал.

Пастер, по существу не знавший ничего конкретного о причинах бешенства, кроме неоспоримого факта его инфекционной природы, использовал принцип ослабления (аттенуации) возбудителя. В целях ослабления болезнетворных свойств возбудителя бешенства был использован кролик, в мозг которого ввели мозговую ткань умершей от бешенства собаки. После смерти кролика мозговая ткань его была введена следующему кролику и т. д. Было проведено около 100 пассажей, прежде чем возбудитель адаптировался к ткани мозга кролика. Будучи введен подкожно в организм собаки, он проявлял лишь умеренные свойства патогенности. Такой «перевоспитанный» возбудитель Пастер назвал «фиксированным», в отличие от «дикого», которому свойственна высокая патогенность. Позднее Пастер разработал метод создания иммунитета, состоящий из серии инъекций с постепенно увеличивающимся содержанием фиксированного возбудителя. Собака, прошедшая полный курс инъекций, оказалась в полной мере устойчивой к инфекции. Пастер пришел к выводу, что процесс развития инфекционной болезни, по существу, является борьбой микробов с защитными силами организма. «Каждая болезнь должна иметь своего возбудителя, а мы должны способствовать развитию иммунитета к этой болезни в организме пациента», - говорил Пастер. Еще не понимая, каким образом организм вырабатывает иммунитет, Пастер сумел использовать его принципы и направить механизмы этого процесса на пользу человека. В июле 1885 г. Пастеру представился случай испытать свойства «фиксированного» возбудителя бешенства на ребенке, укушенном бешеной собакой. Мальчику была проведена серия инъекций все более ядовитого вещества, причем последняя инъекция содержала уже полностью патогенную форму возбудителя. Мальчик остался здоров. Вирус бешенства был открыт Ремленже в 1903 г.

Следует отметить, что ни вирус оспы, ни вирус бешенства не были первыми открытыми вирусами, поражающими животных и человека. Первое место по праву принадлежит вирусу ящура, открытому Леффлером и Фрошем в 1898 г. Эти исследователи, используя многократные разведения фильтрующегося агента, показали его ядовитость и сделали заключение о его корпускулярной природе.

К концу XIX-го столетия выяснилось, что целый ряд заболеваний человека, таких как бешенство, оспа, грипп, желтая лихорадка являются инфекционными, однако их возбудители не обнаруживались бактериологическими методами. Благодаря работам Роберта Коха (1843-1910 гг.), который впервые использовал технику чистых бактериальных культур, появилась возможность различать бактериальные и небактериальные заболевания. В 1890 г. на X конгрессе гигиенистов Кох вынужден был заявить, что «…при перечисленных болезнях мы имеем дело не с бактериями, а с организованными возбудителями, которые принадлежат к совсем другой группе микроорганизмов». Это высказывание Коха свидетельствует, что открытие вирусов не было случайным событием. Не только опыт работы с непонятными по своей природе возбудителями, но и понимание сущности происходящего способствовали тому, что была сформулирована мысль о существовании оригинальной группы возбудителей инфекционных заболеваний небактериальной природы. Оставалось экспериментально доказать ее существование.

Первое экспериментальное доказательство существования новой группы возбудителей инфекционных заболеваний было получено нашим соотечественником - физиологом растений Дмитрием Иосифовичем Ивановским (1864-1920 гг.) при изучении мозаичных заболеваний табака. Это неудивительно, так как инфекционные заболевания эпидемического характера часто наблюдались и у растений. Еще в 1883-84 гг. голландский ботаник и генетик де Фриз наблюдал эпидемию позеленения цветов и предположил инфекционную природу заболевания. В 1886 г. немецкий ученый Майер, работавший в Голландии, показал, что сок растений, больных мозаичной болезнью, при инокуляции вызывает у растений такое же заболевание. Майер был уверен, что виновником болезни является микроорганизм, и безуспешно искал его. В 19 веке заболевания табака наносили огромный вред сельскому хозяйству и в нашей стране. В связи с этим, для изучения заболеваний табака на Украину была направлена группа исследователей, в которую, будучи студентом Петербургского университета, входил Д.И. Ивановский. В результате изучения заболевания, описанного в 1886 г. Майером как мозаичная болезнь табака, Д.И. Ивановский и В.В. Половцев пришли к выводу, что оно представляет собой два различных заболевания. Одно из них - «рябуха» - вызывается грибком, а другое - неизвестного происхождения. Изучение мозаичной болезни табака было продолжено Ивановским в Никитском ботаническом саду под руководством академика А.С. Фамицина. Используя сок пораженного болезнью листа табака, профильтрованный через свечу Шамберлана, задерживающую самые мелкие бактерии, Ивановский вызвал заболевание листьев табака. Культивирование зараженного сока на искусственных питательных средах не дало результатов и Ивановский приходит к выводу, что возбудитель болезни имеет необычную природу - он фильтруется через бактериальные фильтры и не способен расти на искусственных питательных средах. Прогревание сока при 60-70 °C лишало его инфекционности, что свидетельствовало о живой природе возбудителя. Ивановский сначала назвал новый тип возбудителя «фильтрующиеся бактерии». Результаты работы Д.И. Ивановского были положены в основу его диссертации, представленной в 1888 г., и опубликованы в книге «О двух болезнях табака» в 1892 году. Этот год и считается годом открытия вирусов.

Определенный период времени в зарубежных публикациях открытие вирусов связывали с именем голландского ученого Бейеринка (1851-1931 гг.), который также занимался изучением мозаичной болезни табака и опубликовал свои опыты в 1898 г. Профильтрованный сок зараженного растения Бейеринк поместил на поверхность агара, проинкубировал и получил на его поверхности бактериальные колонии. После этого верхний слой агара с колониями бактерий был удален, а внутренний слой был использован для заражения здорового растения. Растение заболело. Из этого Бейеринк сделал вывод, что причиной заболевания являются не бактерии, а некая жидкая субстанция, которая могла проникнуть внутрь агара, и назвал возбудителя «жидкий живой контагий». В связи с тем, что Ивановский только подробно описал свои опыты, но не уделил должного внимания небактериальной природе возбудителя, возникло недопонимание ситуации. Известность работы Ивановского приобрели только после того, как Бейеринк повторил и расширил его опыты и подчеркнул, что Ивановский впервые доказал именно небактериальный характер возбудителя самой типичной вирусной болезни табака. Сам Бейеринк признал первенство Ивановского и в настоящее время приоритет открытия вирусов Д.И. Ивановским признан во всем мире.

Слово ВИРУС означает яд. Этот термин применял еще Пастер для обозначения заразного начала. Следует отметить, что в начале 19 века все болезнетворные агенты назывались словом вирус. Только после того, как стала понятна природа бактерий, ядов и токсинов терминами «ультравирус», а затем просто «вирус» стали обозначать «новый тип фильтрующегося возбудителя». Широко термин «вирус» укоренился в 30-е годы нашего столетия.

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

Первое сообщение, имеющее отношение к вирусам бактерий было сделано Ханкин в 1896 г. В Летописи Института Пастера он заявил, что «... вода некоторых рек Индии обладает бактерицидным действием...», что без сомнения связано с вирусами бактерий. В 1915 г. Туорт в Лондоне, изучая причины лизиса бактериальных колоний, описал принцип передачи «лизиса» новым культурам в ряду поколений. Его работы, как это часто бывает, фактически оказались не замеченными, и два года спустя, в 1917 г., канадец де Эрелль повторно обнаружил явление лизиса бактерий, связанного с фильтрующимся агентом. Он назвал этот агент бактериофагом. Де Эрелль предполагал, что бактериофаг один. Однако исследования Барнета, работавшего в Мельбурне в 1924-34 гг., показали широкое разнообразие бактериальных вирусов по физическим и биологическим свойствам. Открытие многообразия бактериофагов вызвало большой научный интерес. В конце 30-х годов трое исследователей - физик Дельбрюк, бактериологи Лурия и Херши, работавшие в США, создали так называемую «Фаговую группу», исследования которой в области генетики бактериофагов в конечном итоге привели к рождению новой науки - молекулярной биологии.

Изучение вирусов насекомых существенно отстало от вирусологии позвоночных животных и человека. В настоящее время ясно, что вирусы, поражающие насекомых, условно можно разделить на 3 группы: собственно вирусы насекомых, вирусы животных и человека, для которых насекомые являются промежуточными хозяевами, и вирусы растений, которые также поражают насекомых.

Первый вирус насекомых, который был идентифицирован - вирус желтухи шелковичного червя (вирус полиэдроза тутового шелкопряда, названный Bollea stilpotiae). Еще в 1907 г. Провачек показал, что фильтрованный гомогенат больных личинок является инфекционным для здоровых личинок тутового шелкопряда, но только в 1947 г. немецкий ученый Бергольд обнаружил палочковидные вирусные частицы.

Одним из наиболее плодотворных исследований в области вирусологии является изучение Ридом природы желтой лихорадки на волонтерах армии США в 1900-1901 гг. Убедительно было продемонстрировано, что желтая лихорадка вызывается фильтрующимся вирусом, который передавался комарами и москитами. Было также установлено, что москиты после впитывания инфекционной крови в течение двух недель остаются неинфекционными. Таким образом, был определен внешний инкубационный период заболевания (время, необходимое для репродукции вируса в насекомом) и установлены основные принципы эпидемиологии арбовирусных инфекций (вирусных инфекций, передаваемых кровососущими членистоногими).

Способность размножения вирусов растений в своем переносчике - насекомом была показана в 1952 г. Мараморошу. Исследователь, используя технику инъекций насекомым, убедительно показал способность вируса желтухи астр размножаться в своем переносчике - шеститочечной цикаде.

1.2. Этапы развития вирусологии

История достижений вирусологии напрямую связана с успехами развития методической базы исследований.

^ Конец XIX - начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры (свечи Шамберлана), которые использовались как средство разделения возбудителей на бактерии и небактерии. С использованием фильтруемости через бактериологические фильтры были открыты следующие вирусы:

1892 г. - вирус табачной мозаики;

1898 г. - вирус ящура;

1899 г. - вирус чумы рогатого скота;

1900 г. - вирус желтой лихорадки;

1902 г. - вирус оспы птиц и овец;

1903 г. - вирус бешенства и вирус чумы свиней;

1904 г. - вирус оспы человека;

1905 г. - вирус чумы собак и вирус вакцины;

1907 г. - вирус денге;

1908 г. - вирус оспы и трахомы;

1909 г. - вирус полиомиелита;

1911 г. - вирус саркомы Рауса;

1915 г. - бактериофаги;

1916 г. - вирус кори;

1917 г. - вирус герпеса;

1926 г. - вирус везикулярного стоматита.

30-е годы - основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные (белые мыши - для вирусов гриппа, новорожденные мыши - для вирусов Коксаки, шимпанзе - для вируса гепатита B, куры, голуби - для онкогенных вирусов, поросята-гнотобионты - для кишечных вирусов и т. д.). Первым, кто начал систематически использовать лабораторных животных при изучении вирусов, был Пастер, который еще в 1881 г. проводил исследования по инокуляции материала от больных бешенством в мозг кролика. Другая веха - работы по изучению желтой лихорадки, следствием которых явилось использование в вирусологической практике новорожденных мышей. Кульминацией этого цикла работ стало выделение Сайклзом в 1948 г. на мышах-сосунках группы вирусов эпидемической миалгии.

1931 г. - в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза, саркомы кур и некоторым другим вирусам. И в настоящее время куриные эмбрионы широко используются для выделения вирусов гриппа.

1932 г. - английский химик Элфорд создает искусственные мелкопористые коллоидные мембраны - основу для метода ультрафильтрации, с помощью которого стало возможным проводить определение размера вирусных частиц и дифференцировать вирусы по этому признаку.

1935 г. - применение метода центрифугирования дало возможность кристаллизации вируса табачной мозаики. В настоящее время методы центрифугирования и ультрацентрифугирования (ускорение на дне пробирки превышает 200000 g) широко используются для выделения и очистки вирусов.

В 1939 г. для изучения вирусов впервые был применен электронный микроскоп, обладающий разрешающей способностью 0,2-0,3 нм. Использование ультратонких срезов тканей и метода негативного контрастирования водных суспензий позволило проводить изучение взаимодействия вирусов с клеткой и исследовать структуру (архитектуру) вирионов. Сведения, полученные с помощью электронного микроскопа, были значительно расширены с помощью рентгеноструктурного анализа кристаллов и псевдокристаллов вирусов. Совершенствование электронных микроскопов завершилось созданием сканирующих микроскопов, позволяющих получать объемные изображения. С использованием метода электронной микроскопии изучена архитектура вирионов, особенности их проникновения в клетку хозяина.

В этот период была открыта основная масса вирусов. В качестве примера могут быть приведены следующие:

1931 г. - вирус гриппа свиней и вирус западного энцефаломиелита лошадей;

1933 г. - вирус гриппа человека и вирус восточного энцефаломиелита лошадей;

1934 г. - вирус паротита;

1936г. - вирус рака молочной железы мышей;

1937г. - вирус клещевого энцефалита.

40-е годы. В 1940 г. Хогланд с коллегами установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты - ДНК или РНК.

1941 г. - американский ученый Херст на модели вируса гриппа открыл феномен гемагглютинации (склеивания эритроцитов). Это открытие легло в основу разработки методов выявления и идентификации вирусов и способствовало изучению взаимодействия вируса с клеткой. Принцип гемагглютинации положен в основу ряда методов:

^ РГА - реакция гемагглютинации - применяется для обнаружения и титрования вирусов;

РТГА - реакция торможения гемагглютинации - применяется для идентификации и титрования вирусов.

1942 г. - Херст устанавливает наличие у вируса гриппа фермента, который позднее идентифицирован как нейраминидаза.

1949 г. - открытие возможности культивирования клеток животных тканей в искусственных условиях. В 1952 г. Эндерс, Уэллер и Роббинс получили Нобелевскую премию за разработку метода культуры клеток.

Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи.

Создателями вакцин против полиомиелита являются американские вирусологи Сэбин (трехвалентная живая вакцина на основе аттенуированных штаммов полиовирусов трех серотипов) и Солк (убитая трехвалентная вакцина). В нашей стране советскими вирусологами М.П. Чумаковым и А.А. Смородинцевым разработана технология производства живой и убитой вакцин против полиомиелита. В 1988 г. Всемирная ассамблея здравоохранения поставила перед ВОЗ задачу ликвидации полиомиелита во всем мире с полным прекращением циркуляции дикого полиовируса. К настоящему времени достигнут огромный прогресс в этом направлении. Применение глобальной вакцинации против полиомиелита с применением «туровых» схем вакцинации позволило не только кардинально снизить заболеваемость, но и создать территории, свободные от циркуляции дикого полиовируса.

Открыты вирусы:

1945 г. - вирус Крымской геморрагической лихорадки;

1948 г. - вирусы Коксаки.

50-е годы. В 1952 г. Дульбекко разрабатывает метод титрования бляшек в монослое клеток эмбриона цыпленка, что позволило ввести в вирусологию количественный аспект. 1956-62 гг. Уотсон, Каспар (США) и Клуг (Великобритания) разрабатывают общую теорию симметрии вирусных частиц. Структура вирусной частицы стала одним из критериев в системе классификации вирусов.

Этот период характеризовался значительными достижениями в области бактериофагов:

Установлена индукция профага лизогенизирующих фагов (Львов и др., 1950г.);

Доказано, что инфекционность присуща фаговой ДНК, а не белковой оболочке (Херши, Чейз, 1952 г.);

Открыто явление общей трансдукции (Циндер, Ледерберг, 1952 г.).

Реконструирован инфекционный вирус табачной мозаики (Френкель-Конрад, Вильяме, Сингер, 1955-57 гг.), в 1955 г. получен в кристаллическом виде вирус полиомиелита (Шаффер, Шверд, 1955 г.).

Открыты вирусы:

1951 г. - вирусы лейкоза мышей и ECHO;

1953 г. - аденовирусы;

1954 г. - вирус краснухи;

1956 г. - вирусы парагриппа, цитомегаловирус, респираторно-синцитиальный вирус;

1957 г. - вирус полиомы;

1959 г. - вирус аргентинской геморрагической лихорадки.

60-е и последующие годы характеризуются расцветом молекулярно-биологических методов исследования. Достижения в области химии, физики, молекулярной биологии и генетики легли в основу методической базы научных исследований, которые стали применяться не только на уровне методик, но и целых технологий, где вирусы выступают не только как объект исследований, но и как инструмент. Ни одно открытие молекулярной биологии не обходится без вирусной модели.

1967 г. - Катес и МакАуслан демонстрируют присутствие в вирионе осповакцины ДНК-зависимой РНК-полимеразы. В следующем году обнаруживается РНК-зависимая РНК-полимераза у реовирусов, а затем у парамиксо- и рабдовирусов. В 1968 г. Якобсон и Балтимор устанавливают наличие у полиовирусов геномного белка, соединенного с РНК, Балтимор и Бостон устанавливают, что геномная РНК полиовируса транслируется в полипротеин.

Открыты вирусы:

1960 г. - риновирусы;

1963 г. - австралийский антиген (HBsAg).

70-е годы. Балтимор одновременно с Темином и Мизутани сообщают об открытии в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов.

Изучение экспрессии генов у вирусов эукариот дало фундаментальную информацию о молекулярной биологии самих эукариот - существование кэп-структуры мРНК и ее роль в трансляции РНК, наличие полиадениловой последовательности на 3"-конце мРНК, сплайсинг и роль энхансеров в транскрипции впервые выявлены при изучении вирусов животных.

1972 г. - Берг публикует сообщение о создании рекомбинантной молекулы ДНК. Возникает новый раздел молекулярной биологии - генная инженерия. Применение технологии рекомбинантных ДНК позволяет получать белки, имеющие важное значение в медицине (инсулин, интерферон, вакцины). 1975 г. - Келер и Мильштейн получают первые линии гибридов, продуцирующих моноклональные антитела (МКА). На основе МКА разрабатываются самые специфичные тест-системы для диагностики вирусных инфекций. 1976 г. - Бламберг за открытие HBsAg получает Нобелевскую премию. Установлено, что гепатит A и гепатит B вызываются разными вирусами.

Открыты вирусы:

1970 г. - вирус гепатита B;

1973 г. - ротавирусы, вирус гепатита A;

1977 г. - вирус гепатита дельта.

80-е годы. Развитие заложенных отечественным ученым Л.А. Зильбером представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Вирусные онкогены оказались в числе лучших модельных систем, помогающих изучению механизмов онкогенетической трансформации клеток млекопитающих.

1985 г. - Мюллис получает Нобелевскую премию за открытие полимеразной цепной реакции (ПЦР). Это - молекулярно-генетический метод диагностики, позволивший, кроме того, усовершенствовать технологию получения рекомбинантных ДНК и открыть новые вирусы.

Открыты вирусы:

1983 г. - вирус иммунодефицита человека;

1989 г. - вирус гепатита C;

1995 г. - с использованием ПЦР открыт вирус гепатита G.

1.3. Развитие концепции о природе вирусов

Ответы на вопросы «Что такое вирусы?» и «Какова их природа?» составляли предмет дискуссии многие годы со времени их открытия. В 20-30 гг. никто не сомневался, что вирусы являются живой материей. В 30-40 гг. считалось, что вирусы - это микроорганизмы, так как способны размножаться, обладают наследственностью, изменчивостью и приспособляемостью к меняющимся условиям среды обитания, и, наконец, подвержены биологической эволюции, которая обеспечивается естественным и искусственным отбором. В 60-е годы первые успехи молекулярной биологии определили закат концепции о вирусах как организмах. В онтогенетическом цикле вируса выделены две формы - внеклеточная и внутриклеточная. Для обозначения внеклеточной формы вируса введен термин ВИРИОН. Установлены отличия его организации от строения клеток. Обобщены факты, указывающие на совершенно отличный от клеток тип размножения, названный дисъюнктивная репродукция. Дисъюнктивная репродукция - это временная и территориальная разобщенность синтеза вирусных компонентов - генетического материала и белков - от последующей сборки и формирования вирионов. Показано, что генетический материал вирусов представлен одним из двух типов нуклеиновой кислоты (РНК или ДНК). Сформулировано, что основным и абсолютным критерием отличия вирусов от всех других форм жизни является отсутствие у них собственных белоксинтезирующих систем.

Накопившиеся данные позволили прийти к выводу, что вирусы не являются организмами, пусть даже мельчайшими, так как любые, даже минимальные организмы типа микоплазм, риккетсий и хламидий имеют собственные белоксинтезирующие системы. Согласно определению, сформулированному академиком В.М. Ждановым, вирусы являются автономными генетическими структурами, способными функционировать только в клетках с разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот и полной зависимостью от клеточных белоксинтезирующих и энергетических систем, и подвергающимися самостоятельной эволюции.

Таким образом, вирусы представляют собой многообразную и многочисленную группу неклеточных форм жизни, не являющихся микроорганизмами, и объединенных в царство Vira, Вирусы изучаются в рамках вирусологии, которая представляет собой самостоятельную научную дисциплину, имеющую свой объект и методы исследования.

Вирусологию разделяют на общую и частную, а вирусологические исследования - на фундаментальные и прикладные. Предметом фундаментальных исследований в вирусологии является архитектура вирионов, их состав, особенности взаимодействия вирусов с клеткой, способы переноса наследственной информации, молекулярные механизмы синтеза элементов и процесс их объединения в целое, молекулярные механизмы изменчивости вирусов и их эволюция. Прикладные исследования в вирусологии связаны с решением проблем медицины, ветеринарии и фитопатологии.

ГЛАВА 2

^ СТРУКТУРНАЯ И МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ ВИРУСОВ

В онтогенетическом цикле вируса выделены две стадии - внеклеточная и внутриклеточная и, соответственно, две формы его существования - вирион и вегетативная форма. Вирион - это целая вирусная частица, в основном состоящая из белка и нуклеиновой кислоты, часто устойчивая к воздействию факторов внешней среды и приспособленная для переноса генетической информации из клетки в клетку. Вегетативная форма вируса существует в едином комплексе вирус-клетка и только в их тесном взаимодействии.

2.1. Архитектура вирионов

Внеклеточная форма вируса - вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:

Белковая субъединица - единая, уложенная определенным образом полипептидная цепь.

Структурная единица (структурный элемент) - белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами.

Морфологическая единица - группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер.

Капсид - внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты.

Кор (core) - внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте.

Нуклеокапсид - комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома.

Суперкапсид или пеплос - оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками.

Матрикс - белковый компонент, локализованный между суперкапсидом и капсидом.

Пепломеры и шипы - поверхностные выступы суперкапсида.

Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров - 100-150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170x450 нм. Длина нитевидных вирусов растений может составлять 2000 нм.

Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов. Условная модель гипотетического вириона, включающего все возможные структурные образования, представлена на рисунке 1.

Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга:

1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы);

2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).

Рис. 1. Строение гипотетического вириона

2.1.1. Строение вирионов, лишенных оболочки

Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками.

1. Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц.

2. Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.

3. Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.

Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) - спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ. (схема 1).

Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P=pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18x300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм.

Икосаэдрическая симметрия - самая эффективная для конструирования замкнутог

Вирусология (от лат. vīrus - «яд» и греч. logos — слово, учение) - наука о вирусах , раздел биологии.

Вирусология выделилась в самостоятельную дисциплину в середине XX века. Она возникла как ветвь патологии - патологии человека и животных с одной стороны, и фитопатологии - с другой. Первоначально вирусология человека, животных и бактерий развивалась в рамках микробиологии. Последующие успехи вирусологии в значительной мере основаны на достижениях смежных естественных наук - биохимии и генетики . Объектом исследования вирусологии являются субклеточные структуры - вирусы. По своему строению и организации они относятся к макромолекулам, поэтому с того времени, когда оформилась новая дисциплина, молекулярная биология , объединившая различные подходы к изучению структуры, функций и организации макромолекул, определяющих биологическую специфичность, вирусология стала также составной частью молекулярной биологии. Молекулярная биология широко применяет вирусы как инструмент исследования, а вирусология для решения своих задач используют методы молекулярной биологии.

История вирусологии

Вирусные болезни, такие как оспа, полиомиелит, желтая лихорадка, пестролистность тюльпанов известны с давних времен, однако о причинах, их вызывающих долгое время никто ничего не знал. В конце XIX столетия, когда удалось установить микробную природу ряда инфекционных заболеваний, патологи пришли к заключению, что многие из распространенных болезней человека, животных и растений нельзя объяснить заражением бактериями.

Открытие вирусов связано с именами Д.И.Ивановского и М.Бейеринка . В 1892 г. Д.И.Ивановский показал, что заболевание табака - табачная мозаика - может быть перенесено от больных растений к здоровым, если их заразить соком больных растений, предварительно пропущенным через специальный фильтр, задерживающий бактерии. В 1898 году М.Бейеринк подтвердил данные Д.И.Ивановского и сформулировал мысль о том, что заболевание вызывается не бактерией, а принципиально новым, отличным от бактерий, инфекционным агентом. Он назвал его contagium vivum fluidum - живое жидкое заразное начало. В то время для обозначения инфекционного начала любой болезни употребляли термин «virus» - от латинского слова «яд», «ядовитое начало». Сontagium vivum fluidum стали называть фильтрующимся вирусом, а позже - просто «вирусом». В том же, 1898 году Ф.Лефлер и П.Фрошш показали, что через бактериальные фильтры проходит возбудитель ящура крупного рогатого скота. Вскоре после этого было установлено, что и другие болезни животных, растений, бактерий и грибов вызываются подобными агентами. В 1911 году П.Раус открыл вирус, вызывающий опухоли у кур. В 1915 году Ф.Туорт, а в 1917 году Ф.Д’Эрель независимо друг от друга открыли бактериофаги - вирусы, разрушающие бактерии.

Природа этих возбудителей болезней, оставалась непонятной более 30 лет - до начала 30-х годов. Это объяснялось тем, что к вирусам нельзя было применить традиционные микробиологические методы исследования: вирусы, как правило, не видны в световой микроскоп и не растут на искусственных питательных средах.

Категории:Детализирующие понятия:

Саратовский государственный университет имени Н. Г. Чернышевского

ВИРУСОЛОГИЯ

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Учебно-методическое пособие для студентов биологического факультета

Вирусология. Методические материалы:Учеб.-метод. пособие для студ. биол. фак. / Авторы-сост. Е. В. Глинская, Е. С. Тучина, С. В. Петров.

– Саратов, 2013. 84 с.: ил.

ISBN 978-5-292-03935-8

Учебно-методическое пособие составлено в соответствии с «Программой по вирусологии для студентов биологических факультетов университетов».

Оно содержит теоретический материал, касающийся истории развития вирусологии, природы и происхождения вирусов, химического состава, морфологии и репродукции вирусов, разнообразия вирусов, патогенеза и лабораторной диагностики вирусных инфекций, особенностей противовирусного иммунитета. В конце пособия приведены план проведения лабораторных работ, словарь основных терминов и тестовые задания для самоконтроля.

Для студентов биологического факультета, обучающихся по направлению подготовки 020400 «Биология».

Кафедра микробиологии и физиологии растений биологического факультета

(Саратовский государственный университет имени Н. Г. Чернышевского)

Доктор биологических наук Л. В. Карпунина (Саратовский государственный аграрный университет имени Н.И. Вавилова)

ВВЕДЕНИЕ

Вирусология занимается исследованием природы и происхождения вирусов, их химического состава, морфологии, механизмов размножения, биохимических и молекулярно-генетических аспектов их взаимоотношений с клеточными организмами, проблемами противовирусного иммунитета и разработкой мер и средств предупреждения, диагностики и лечения вирусных заболеваний.

Актуальность вирусологии на настоящий момент не вызывает сомнений. Вирусы являются одними из главных возбудителей многих инфекционных и онкологических заболеваний человека, животных и растений. Вирусы представляют собой идеальный объект для молекулярных биологов и генетиков.

Пособие предназначено для подготовки студентов к семинарским и практическим занятиям по курсу «Вирусология». В пособии рассмотрены теоретические вопросы общей вирусологии, представлен детальный план проведения практических работ, приведен перечень необходимой литературы, а также тестовые задания для самоконтроля.

Хочется надеяться, что учебное пособие «Вирусология. Методические материалы» окажется полезным как студентам и преподавателям вузов, так и специалистам-вирусологам.

Раздел 1. Вирусология как наука. История развития вирусологии. Природа и происхождение вирусов.

ВИРУСОЛОГИЯ КАК НАУКА

Вирусология – наука, изучающая природу и происхождение вирусов, особенности их химического состава, генетики, строения, морфологии, механизмов размножения и взаимодействия с клеточными организмами.

Вирусология занимает важное место среди биологических наук. Велико ее теоретическое и практическое значение для медицины, ветеринарии и сельского хозяйства. Вирусные болезни широко распространены у человека, животных и растений; кроме того, вирусы служат моделями, на которых изучаются основные проблемы генетики и молекулярной биологии. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации.

Современная вирусология включает следующие разделы:

- общая вирусология, изучающая основные принципы строения и размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе.

- частная (медицинская, ветеринарная и сельскохозяйственная) вирусология изучает особенности различных систематических групп вирусов человека, животных и растений и разрабатывает методы диагностики, профилактики и лечения вызываемых этими вирусами болезней.

- молекулярная вирусология исследует молекулярно-генетическую структуру вирусов, строение и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, процессы взаимодействия с клеткой, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

ИСТОРИЯ РАЗВИТИЯ ВИРУСОЛОГИИ

Первые упоминания о вирусных болезнях людей и животных встречаются в дошедших до нас письменных источниках древних народов. В них, в частности, содержатся сведения об эпизоотиях бешенства у волков, шакалов и собак и полиомиелите в Древнем Египте (II–III тыс. лет до н. э.). О натуральной оспе было известно в Китае за тысячу лет до нашей эры. Давнюю историю имеет также желтая лихорадка, на протяжении столетий косившая первопроходцев в тропической Африке и моряков. Первые описания вирусных болезней растений относятся к живописной пестролепестности тюльпанов, которые уже около 500 лет выращивают голландские цветоводы.

Началом становления вирусологии как науки можно считать конец XIX века. Работая над созданием вакцины против бешенства, Л. Пастер в 80-х гг. XIX века впервые применил термин «вирус» (от лат. «virus» – яд) для обозначения инфекционного агента. Пастер был первым, кто начал использовать лабораторных животных в работах по изучению вирусов. Он инокулировал материал, полученный от больных бешенством, в мозг кролика. Однако Пастер не делал различия между вирусами как таковыми и другими инфекционными агентами.

Первым, кто выделил вирусы как самостоятельную группу инфекционных агентов, был русский учёный Д. И. Ивановский. В 1892 г. в результате собственных исследований он пришёл к выводу, что мозаичную болезнь табака вызывают бактерии, проходящие через фильтр Шамберлана, которые, кроме того, не способны расти на искусственных субстратах. Представленные данные о возбудителе табачной мозаики длительное время являлись критериями для отнесения возбудителей болезней к «вирусам»: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведение картины заболевания фильтратом, освобожденным от бактерий и грибов.

В 1898 г. М. Бейеринк подтвердил и расширил исследования Д. И. Ивановского о вирусе табачной мозаики и сформулировал первую полноценную теорию о вирусах как о новом классе микроорганизмов и возбудителей болезней. Несмотря на то что многие зарубежные ученые приписывали ему открытие вирусов, М. Бейеринк признал приоритет Д. И. Ивановского.

В последующие годы микробиологи и врачи установили вирусную этиологию многих антропонозных и зоонозных болезней. Так, уже в 1898 г. Ф. Леффлер и П. Фрош установили фильтруемость возбудителя ящура коров. Они первыми показали, что вирусы могут поражать не только растения, но и животных.

Серия открытий новых вирусов пришлась на первое десятилетие XX века. Началась она с исследований У. Рида, установившего в 1901 г. вирусную природу тропической желтой лихорадки. У. Рид руководил исследованиями, в ходе которых было установлено, что вирус жёлтой лихорадки присутствует в крови больного в течение первых трёх дней заболевания и что он может передаваться при укусе комара; таким образом, впервые было показано, что вирусы могут передаваться насекомыми. Семь лет спустя, было доказано, что вирусными болезнями являются также полиомиелит (К. Ландштейнер и Э. Поппер), лихорадка денге (П. Ашбери и Ч. Крейч) и лейкоз кур (В. Эллерман и О. Банг). В 1911 г. Ф. Раус привел неопровержимые доказательства наличия в вытяжке тканей саркомы кур онкогенного вируса, способного вызывать опухоль у здоровых птиц. Благодаря исследованиям X. Арагана и Э. Пашена (1911–1917 гг.) была при-

знана вирусная природа ветряной оспы. Одновременно с ними Т. Андерсон

и Дж. Гольдберг установили вирусную этиологию кори.

В 1915 г. Ф. Туортом были открыты вирусы бактерий. В 1917 г. независимо от него вирусы бактерий были открыты Ф. Д’Эрелем, который ввёл термин «бактериофаг».

Вторая волна открытий вирусов антропонозных болезней приходится на 30-е гг. прошлого века. В 1933 г. У. Смит, К. Эндрюс и П. Лейдлоу установили, что грипп вызывают не бактерии, а вирусы. К началу Второй мировой войны к вирусным болезням были причислены эпидемический паротит (К. Джонсон, Э. Гудпасчур, 1934 г.), японский летне-осенний комариный энцефалит (М. Хаяши, А.С. Смородинцев, 1934–1938 гг.), даль-

в 1937 г. Г. Финдли и Ф. Мак -Каллум, а подтвердили это в экспериментах на обезьянах и людях-добровольцах в 1943–1944 гг. Д. Камерон, Ф. МакКаллум и В. Хавенс.

Первый шаг в направлении описания молекулярной структуры вирусов был сделан в 1935 г., когда В. Стенли получил кристаллы вируса т а- бачной мозаики. Детально изучить тонкую структуру вирусов стало возможным в 50–60 гг. XX века после усовершенствования электронного микроскопа.

В 1938 г. М. Тэйлор получил ослабленную живую вакцину против жёлтой лихорадки. Разработанная вакцина оказалась такой надёжной и эффективной, что используется до сегодняшнего дня. Она спасла миллионы жизней и послужила моделью для разработки многих последующих вакцин. Кроме того, Тейлор усовершенствовал и ввёл в систему использование в качестве восприимчивых животных мышей. В начале 30-х гг. кроме мышей стали использовать также куриные эмбрионы, т.е. появился ещё один источник тканей, чувствительных к заражению вирусами и способных поддерживать их размножение.

По мере совершенствования экспериментальных систем развивались количественные методы исследований. Первый точный и быстрый метод подсчёта пораженных вирусом клеток был разработан в 1941 г., когда Г. Хирст продемонстрировал, что вирус гриппа вызывает агглютинацию эритроцитов.

Развитию вирусологии способствовала разработка метода культур клеток. В 1949 г. в ключевом эксперименте Дж. Ф. Эндерса, Т. Х. Уеллера и Ф. С. Роббинса было показано, что культуры клеток способны поддерживать рост вируса полиомиелита. Это открытие возвестило о приходе эры современной вирусологии и послужило толчком к ряду исследований, которые в конечном итоге привели к выделению многих вирусов, вызывающих серьёзные заболевания у человека. В 50-е и 60-е гг. ХХ века были вы-

делены некоторые энтеровирусы и респираторные вирусы, установлены причины большого числа болезней, вирусное происхождение которых до того момента лишь предполагали. Так, например, в 1953 г. М. Блумберг открыл вирус гепатита B и создал против него первую вакцину. В 1952 г. Р. Дюльбекко применил к вирусам животных метод бляшек.

Открытие бактериофагов было оценено лишь в конце 30-х гг., когда вирусы бактерий начали использовать в качестве удобной модели для изучения взаимодействия вирус-клетка в генетических и биохимических исследованиях. В 1939 г. Э. Эллис и М. Дельбрюк выдвинули концепцию «одноэтапного цикла роста вируса». Эта работа заложила основы для понимания характера репродукции вирусов, заключающейся в сборке отдельных компонентов.

Важные для молекулярной биологии открытия были сделаны при использовании в качестве объектов исследований вирусов животных. В 1970 г. Х. М. Темин и Д. Балтимор независимо друг от друга открыли у ретровирусов обратную транскриптазу, способную осуществлять синтез ДНК на матрице РНК. В 1976 г. Д. Бишоп и Х. Вармус обнаружили, что онкоген вируса саркомы Рауса присутствует также в геномах нормальных клеток животных и человека. В 1977 г. Р. Робертс и Ф. Шарп независимо друг от друга показали прерывистую структуру генов аденовирусов. В 1972 г. П. Берг создал первые рекомбинантные молекулы ДНК, построенные на основе кольцевого ДНК-генома вируса SV40 с включением генов фага λ и галактозного оперонаEscherichia coli . Эта работа дала начало технологии рекомбинантных ДНК. В 1977 г. стала известна первая полная нуклеотидная последовательность генома биологического объекта: Х. Э. Сэнгер с сотрудниками определили нуклеотидную последовательность генома фага ØX174. В 1990 г. была осуществлена первая успешная попытка применения генотерапии в клинической практике: ребёнку, страдающему тяжёлым комбинированным иммунодефицитом, заболеванием, связанным с дефектом гена аденозиндезаминидазы, была введена нормальная копия гена с использованием вектора, построенного на основе генома ретровируса.

В 50–60 гг. также проводились исследования по изучению нетипичных вирусных агентов. В 1957 г. Д. Гайдушек предположил, что болезнь куру вызывается одним из вирусов медленных инфекций. Однако только в 1982 г. была выявлена природа вирусов медленных инфекций («slow virus»), когда С. Прузинер продемонстрировал, что скрепи вызывается инфекционными белками, названными им прионами.

В 1967 г. Т. О. Дайнер открыл вироиды, инфекционные агенты, представляющие собой кольцевые молекулы РНК, вызывающие заболевания у растений.

В последующие годы список открытых вирусов продолжал пополняться. В 1981 г. выделен вирус лейкемии Т-лимфоцитов человека – пер-

вый вирус, для которого была достоверно установлена способность вызывать рак у человека.

ПРИРОДА И ПРОИСХОЖДЕНИЕ ВИРУСОВ

Представления о природе вирусов со времени их открытия претерпели значительные изменения.

Д.И. Ивановский и другие исследователи того времени подчеркивали два свойства вирусов, позволившие выделить их в отдельную группу живых организмов: фильтруемость и неспособность размножаться на исскуственных питательных средах. Позже выяснилось, что эти свойства не абсолютны, так как были обнаружены фильтрующиеся формы бактерий (L-формы) и микоплазмы, не растущие на искусственных питательных средах и по размерам приближавшиеся к наиболее крупным вирусам (вирус оспы, мимивирус, мегавирус, пандоравирус).

К уникальным свойствам вирусов относится их способ размножения, который резко отличается от способа размножения всех других клеток и организмов. Вирусы не растут, их размножение обозначается как дизъюнктивная репродукция, что подчеркивает разобщенность в пространстве и времени синтеза вирусных компонентов с последующей сборкой и формированием вирионов.

В связи с вышеизложенным не раз возникали дискуссии по поводу того, что же такое вирусы – живое или не живое, организмы или не организмы? Безусловно, вирусы обладают основными свойствами всех других

форм жизни – способностью размножаться, наследственностью, изменчивостью, приспособляемостью к условиям внешней среды. Они занимают определенную экологическую нишу, на них распространяются законы эволюции органического мира. К середине 40-х гг. ХХ века сложилось представление о вирусах как о наиболее примитивных микроорганизмах. Логическим развитием этих взглядов было введение термина «вирион», обозначавшего внеклеточный вирусный индивидуум. Однако с развитием исследований по молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как организмах. Отсутствие собственной белок-синтезирующей системы, дизъюнктивный способ репродукции, интеграция с клеточным геномом, существование вирусных саттелитов и дефектных вирусов, феноменов множественной реактивации и комплементации – все это мало укладывается в представление о вирусах как организмах.

Все вирусы, включая саттелиты и дефектные вирусы, вироиды и прионы, имеют нечто общее, их объединяющее. Все они являются автономными генетическими структурами, способными функционировать и репродуцироваться в восприимчивых к ним клетках различных групп бактерий, грибов, растений и животных. Это наиболее полное определение, позволяющее очертить царство вирусов.

Согласно второй гипотезе, вирусы являются потомками древних, доклеточных форм жизни – протобионтов, предшествовавших появлению клеточных форм жизни, с которых и началась биологическая эволюция.

Часть 1

На каждый вопрос даны четыре варианта ответа. Выберите только один правильный и внесите его в матрицу (часть 1).

  1. Объектом изучения вирусологии является:
    • а) кошка;
    • б) возбудитель гриппа;
    • в) жук-усач;
    • г) подберёзовик.
  2. Для того чтобы рассмотреть клетки организма человека, нужно использовать:
    • а) лупу;
    • б) бинокль;
    • в) микроскоп;
    • г) телескоп.
  3. Мама поставила градусник своему ребёнку, посмотрела на этот прибор и установила, что ребёнок заболел. Этот вывод был сделан потому, что мама использовала метод:
    • а) измерения;
    • б) моделирования;
    • в) эксперимента;
    • г) наблюдения.
  4. Школьник взял кусочек хлеба, разломил его пополам, одну половинку оставил в комнате, а вторую положил в холодильник. В комнате хлеб покрылся плесенью, а в холодильнике нет. Школьник сделал вывод, что низкая температура замедляет развитие плесени. Этот вывод был сделан потому, что школьник использовал метод:
    • а) измерения;
    • б) моделирования;
    • в) эксперимента;
    • г) наблюдения.
  5. Если сильно нагреть в пробирке кусочек варёного яйца, то появится дым, неприятный запах, а кусочек в пробирке почернеет. Этот опыт доказывает, что в яйце содержатся(-ится):
    • а) органические вещества;
    • б) минеральные соли;
    • в) вода;
    • г) углекислый газ.
  6. Какой из перечисленных пищевых продуктов содержит больше всего жиров?
    • а) огурец;
    • б) белок варёного яйца;
    • в) хлеб;
    • г) грецкий орех.
  7. Что из чего состоит? Выберите правильный ответ:
    • а) вирус состоит из клеток;
    • б) клетка состоит из организмов;
    • в) ткань состоит из клеток;
    • г) организм состоит из вирусов.
  8. Рука может сгибаться в локте из-за сокращения:
    • а) покровной ткани;
    • б) нервной ткани;
    • в) соединительной ткани;
    • г) мышечной ткани.
  9. Если белую хризантему поставить в раствор красного красителя, то через некоторое время лепестки станут розовыми. Это произойдёт из-за работы:
    • а) проводящей ткани;
    • б) покровной ткани;
    • в) механической ткани;
    • г) соединительной ткани.
  10. На стволах больших деревьев иногда можно заметить организмы, разрушающие древесину, – трутовики. Трутовики относятся к царству:
    • а) растений;
    • б) грибов;
    • в) животных;
    • г) бактерий.

Часть 2

Вам предлагаются тестовые задания с одним вариантом ответа из пяти возможных (а–д), но требующих предварительного множественного выбора (из 1–5). Букву правильного ответа внесите в матрицу (часть 2).

1. Из перечисленных ниже организмов в тундре можно встретить:

Ответы:

  • а) 1, 2, 4
  • б) 1, 3, 5
  • в) 1, 2, 5
  • г) 3, 4, 5
  • д) 2, 3, 5

2. Выберите фамилии учёных, которые внесли вклад в развитие биологии:

Ответы:

  • а) 1, 2, 4
  • б) 2, 3, 4
  • в) 1, 2, 3
  • г) 3, 4, 5
  • д) 2, 4, 5

3. К биологическим наукам может относиться:

  1. минералогия;
  2. зоология;
  3. палеонтология;
  4. геология;
  5. энтомология.

Ответы:

  • а) 2, 3, 4
  • б) 2, 3, 5
  • в) 1, 2, 3
  • г) 3, 4, 5
  • д) 2, 4, 5

4. Каких из животных можно отнести к позвоночным?

1) дождевой червь 2) гремучая змея

Дождевой червь

3) угорь 4) питон
5) слизень

Ответы:

  • а) 2, 3, 4
  • б) 2, 3, 5
  • в) 1, 2, 3
  • г) 3, 4, 5
  • д) 2, 4, 5

5. К признакам живых организмов относятся:

  1. раздражимость;
  2. питание;
  3. в химический состав входит кремний;
  4. размножение;
  5. выделение тепла.

Ответы:

  • а) 1, 3, 4
  • б) 2, 3, 5
  • в) 1, 2, 4
  • г) 3, 4, 5
  • д) 1, 4, 5

Часть 3

Задание на определение правильности суждений. Номера правильных суждений внесите в лист ответов.

1. На карте цифрами указаны некоторые регионы России.

Какие из природных зон (или поясов растительности) наиболее типичны для регионов, обозначенных на рисунке цифрами 1–5?

  1. полуостров Таймыр (Красноярский край);
  2. Оренбургская область;
  3. Республика Кабардино-Балкария;
  4. Калужская область;
  5. Иркутская область.

В таблице ответов внесите в строку «Регион » соответствующую цифру.

Какие растения растут в этих природных зонах?

  • А – дуб;
  • Б – сосна сибирская (кедровая);
  • В – ковыль;
  • Г – карликовая берёза;
  • Д – эдельвейс.

Внесите в строку «Растения » соответствующую букву.

Какие животные живут в этих природных зонах?

  • Е – бурундук;
  • Ж – зубр;
  • З – сайгак;
  • И – тундровая куропатка;
  • К – кавказский леопард.

Внесите в строку «Животные » соответствующую букву.

Бланк для записи ответов

Часть 1

1 2 3 4 5 6 7 8 9 10

Часть 2

Ответы

Часть 1

1 2 3 4 5 6 7 8 9 10
б в а в а г в г а б

Часть 2

Система оценивания

  1. За каждый правильный ответ части I – 1 балл, всего за часть I – 10 баллов.
  2. За каждый правильный ответ части II – 2 балла, всего за часть II – 10 баллов.
  3. За каждый правильный ответ (верно/неверно) части III – 2 балла, всего за часть III – 10 баллов.
  4. За каждый правильный ответ части IV – 2 балла, всего за часть IV – 30 баллов.

Максимальная оценка – 60 баллов .

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: