Морфологические признаки микроорганизмов. Морфология бактерий

Морфология микроорганизмов – это наука, изучающая их форму, строение, способы передвижения и размножения.

Микробы, наиболее часто встречающиеся в процессе приготовления пищи, делят на бактерии, плесневые грибы, дрожжи и вирусы. Большинство микробов - одноклеточные организмы, размер которых измеряется в микрометрах - мкм (1/1000 мм) и нанометрах - нм (1/1000 мкм).

Бактерии.

Бактерии - одноклеточные, наиболее изученные микроорганизмы размером 0,4-10 мкм. По форме бактерии бывают шаровидные, палочковидные и извитые (рис. 1). Бактерии шаровидной формы называются кокками.

В зависимости от размеров и расположения клеток встречаются микрококки (одиночные клетки), диплококки (группа из двух клеток), стрептококки (в виде цепочки клеток), стафилококки (скопления клеток в виде виноградной грозди). Размеры клеток шаровидных бактерий составляют 0,2-2,5 мкм.

Палочковидные бактерии встречаются в виде одиночных палочек, а также в виде двойных и соединенных в цепочку.

Разнообразием форм клеток отличаются извитые бактерии, которые имеют различные длину и толщину. К ним относятся вибрионы, спириллы, спирохеты.

Длина палочковидных и извитых бактерий от 1 до 5 мкм.

Размеры и форма бактерий могут изменяться в зависимости от различных факторов внешней среды.

Строение бактериальной клетки.

От внешней среды клетка отделена плотной оболочкой - клеточной стенкой. На долю клеточной стенки приходится от 5 до 20 % сухого вещества клетки. Клеточная стенка является каркасом клетки, придает ей определенную форму, предохраняет от неблагоприятных внешних воздействий, участвует в обмене веществ клетки с окружающей средой.

Наружный слой оболочки у многих бактерий может ослизняться, образуя защитный покров - капсулу.

Основной частью клетки является цитоплазма - прозрачная, полужидкая вязкая белковая масса, пропитанная клеточным соком. Цитоплазма предохраняет клетку от механических повреждений и высыхания. В цитоплазме находятся запасные питательные вещества (зерна крахмала, капельки жира, гликоген, белок) и другие клеточные структуры. В цитоплазме находятся мембранные структуры - мезосомы. В мезосомах имеются ферменты. В цитоплазме находится ядерный аппарат бактериальной клетки, который называется нуклеоидом. Он представляет собой двойную спираль ДНК в виде замкнутого кольца.

У некоторых бактерий имеются жгутики. Жгутики - это тонкие, спирально закрученные нити. С помощью жгутиков некоторые виды бактерий могут активно передвигаться. Шаровидные бактерии (кокки) неподвижны. Подвижны некоторые виды палочковидных бактерий и все извитые. Бактерии могут передвигаться с помощью ресничек.

Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Она полупроницаема и играет важную роль в обмене веществ между клеткой и внешней средой.

В цитоплазме содержатся также рибосомы и различные включения. Рибосомы в цитоплазме представлены в виде мелких гранул. Они состоят примерно наполовину из рибонуклеиновой кислоты (РНК) и белка. РНК участвует в синтезе белка.

Размножение. Бактерии размножаются бесполым путем, главным образом простым делением клетки на две части.

Размножение происходит при благоприятных условиях. Характерной особенностью размножения бактерий является быстрота протекания процесса. Продолжительность размножения бактерий от 30 минут до нескольких часов. Названия микроорганизмов состоят из двух латинских слов, первое означает род, второе - вид.

Некоторые палочковидные бактерии при неблагоприятных условиях образуют споры (сгущенная цитоплазма, покрытая плотной оболочкой). Споры не нуждаются в питании, не способны размножаться, но сохраняют свою жизнеспособность при высоких температурах, высушивании, замораживании в течение нескольких месяцев (палочка ботулинуса) или даже многих лет (палочка сибирской язвы). Споры погибают при стерилизации (нагревании до 120°С в течение 29 мин). В благоприятных условиях они прорастают в обычную (вегетативную) бактериальную клетку. Спорообразующие бактерии называются бациллами.

Грибы составляют большую группу организмов, которые выделены в отдельное царство Микота (Mycota). Грибы широко распространены в природе. Грибы являются эукариотами. В царство грибов входят микроскопические мицелиальные грибы (плесневые грибы).

Строение. Клетки плесневых грибов имеют форму вытянутых переплетающихся нитей - гифов толщиной 1 - 15 мкм, образующих тело плесени - мицелий (грибницу), состоящий из одной или многих клеток. На поверхности мицелия развиваются плодовые тела, в которых созревают споры.

Строение. Клетки микроскопических грибов имеют вытянутую форму и называются гифами. Переплетаясь, нитеобразные гифы образуют тело гриба в виде ваты, пуха и других подобных образований, которое называется грибницей, или мицелием. Мицелий состоит из двух частей: верхней плодоносящей и нижней, которая служит для прикрепления к питательной среде -субстрату - и питания гриба. Грибы видны невооруженным глазом.

Клетки мицелия имеют клеточную стенку, которая обладает защитными свойствами. Клеточная стенка также определяет форму клетки. Внутри клетка заполнена цитоплазмой, в которой находятся ядра, рибосомы, митохондрии и вакуоли.

Ядра регулируют процесс обмена веществ, размножение и передачу наследственных признаков. Рибосомы являются центром синтеза белков, а в митохондриях протекают энергетические процессы. Вакуоли - это полости круглой формы, заполненные клеточным соком, где откладываются запасные питательные вещества (гликоген, жир, волютин).

Размножение. Микроскопические грибы размножаются в основном двумя способами: бесполым (вегетативно) и половым.

При бесполом размножении формируются споры.

При половом размножении сначала происходит слияние двух близлежащих клеток. Затем процесс размножения протекает у различных видов грибов по-разному. У одних образуется клетка, называемая зиготой, которая затем прорастает. У других грибов образуется плодовое тело, внутри которого развиваются сумки (аски) со спорами. Попадая в благоприятные условия, споры созревают, сумка разрывается. Споры грибов очень устойчивы к внешним воздействиям, они могут в течение нескольких лет сохранять жизнеспособность.

Микроскопические грибы для своего развития требуют наличия кислорода, т. е. являются аэробами и размножаются только при доступе воздуха! Оптимальными условиями для их размножения является температура 25-35 °С и относительная влажность воздуха 70-80 %.

По строению клетки плесневых грибов отличаются от бактериальных клеток тем, что имеют одно или несколько ядер и вакуолей (полостей, заполненных клеточной жидкостью).

Дрожжи относятся к эукариотным микроорганизмам. Они составляют большую группу одноклеточных неподвижных микроорганизмов, широко распространенных в природе. Большинство дрожжей относятся к классу грибов - аскомицетовПо форме дрожжи бывают круглые, овальные, яйцевидные и удлинённые. Размеры дрожжевых клеток от 2 до 12 мкм.

Дрожжи широко распространены в природе. Они способны расщеплять (сбраживать) сахара в спирт и углекислый газ.

Строение клеток. Дрожжевые клетки отделены от внешней среды клеточной стенкой. Она защищает клетку от неблагоприятных воздействий и определяет ее форму. Под клеточной стенкой находится цитоплазматическая мембрана, играющая большую роль в обмене веществ. Клетка заполнена цитоплазмой, в которой находятся ядро, митохондрии, рибосомы, вакуоли.

Ядро окружено двойной мембраной. Функциями ядра являются регулирование процессов обмена веществ и других химических процессов в клетке, передача наследственных признаков.

Митохондрии - это мелкие частицы различной формы. В них протекают энергетические процессы и запасается энергия.

Рибосомы - мельчайшие тельца, являющиеся центром синтеза белка. Вакуоли представляют собой пузырьки, заполненные клеточным соком. Внутри вакуолей находятся запасные вещества - жиры, углеводы (гликоген), волютин.

Размножение. Дрожжи при благоприятных условиях размножаются двумя способами: бесполым, или вегетативным (почкование), и половым (спорообразование).

Вегетативное размножение протекает следующим образом. Сначала на исходной (материнской) клетке образуется небольшой бугорок - почка, которая по мере роста увеличивается в размерах. Одновременно с этим происходит деление ядра на две части. Одно из ядер с частью цитоплазмы и другими элементами клетки переходит в молодую (дочернюю) клетку.

По мере роста дочерней клетки перетяжка, которая соединяет ее с материнской клеткой, сужается, таким образом, дочерняя клетка как бы отшнуровывается, а затем отрывается и отделяется от материнской. Этот процесс протекает за несколько часов.

Спорообразование может происходить также путем слияния двух вегетативных клеток с образованием зиготы, в которой затем образуются споры, прорастающие в вегетативные клетки. Далее они размножаются почкованием.

Вирусы - это микроорганизмы очень маленьких размеров от 35 до 125 нанометров, поэтому их можно обнаружить только с помощью электронного микроскопа.

По форме вирусы бывают округлыми, спиралевидными, а также в виде палочек и многогранников. Они имеют простое строение и различны по химическому составу.

Вирусы не имеют клеточной структуры. Они устойчивы к высушиванию и к воздействию низких температур. Разрушение их происходит при нагревании до 60-80 °С.

Вирусы вызывают ряд тяжелых заболеваний: оспу, корь, полиомиелит, грипп и др. Проникая в клетки хозяина, вирус размножается, вызывая их гибель.

Вопросы для самоконтроля

1. Бактерии. Строение. Классификация. Размножение.

2. Грибы. Строение. Классификация. Размножение.

3. Дрожжи. Строение. Классификация. Размножение.

4. Вирусы. Строение. Классификация. Размножение.

Морфология бактерий (прокариот)

Бактерии (греч. bakterion — палочка) — микроорганизмы с прокариотным типом строения. Преимущественно это одноклеточные организмы, однако существует немало форм, состоящих из многих клеток. Термин «прокариоты» равнозначен термину «бактерии».

Форма и размеры бактерий

По форме клеток бактерии подразделяются на три основные группы: шаровидные, или кокки, палочковидные и извитые (рис. 1).

Кокки (греч. kokkos — зерно, лат coccus — ягода). Имеют сферическую форму в виде правильного шара, эллипса, боба, ланцета. В зависимости от взаимного расположения клеток после деления различают: микрококки, или монококки, стафилококки, диплококки, стрептококки, тетракокки и сарцины.

Рис. 1. Основные формы бактерий

а — микрококки; б — диплококки и тетракокки; в — сарцины; г — стрептококки; д — стафилококки; е. ж — палочковидные бактерии; з — вибрионы; и — спириллы; к — спирохеты

Микрококки (лат. micrococcus — маленький) делятся в равных плоскостях и располагаются одиночно, парами или беспорядочно. Сапрофиты, обитают в почве, воде, воздухе. Например, Micrococcus luteus.

Стафилококки (греч. staphyle — виноградная гроздь) — кокки, делящиеся в различных плоскостях и располагающиеся несимметричными гроздями, иногда одиночно, парами, тетрадами. Сапрофиты и патогенные. Например, Staphylococcus aureus.

Диплококки (греч. diploos — двойной) делятся в одной плоскости, образуя попарно соединенные кокки. Например, Azotobacter chroococcum.

Стрептококки (греч. streptos — цепочка) — кокки, расположенные в виде цепочки, встречаются одиночные и парные клетки, иногда тетрады. Образуются при делении в одной плоскости. Сапрофиты и патогенные. Например, Streptococcus pyogenes.

Тетракокки (греч. tetra — четыре) — кокки, которые делятся в двух взаимно перпендикулярных плоскостях и располагаются по четыре.

Сарцины (лат. sarcio — связываю) — кокки, делящиеся в трех взаимно перпендикулярных плоскостях и образующие правильные пакеты по 8—16 клеток и более. Сапрофиты, встречаются в воздухе, почве, кишечнике животных и человека. Например, Sarcina ureae.

Палочковидные бактерии. Это самая многочисленная группа прокариот. Они имеют осевую симметрию и цилиндрическую форму тела с округлыми или заостренными концами. Палочковидные формы делят на две группы: неспоровые палочки — бактерии (Bacterium) и палочки, образующие споры, — бациллы (Bacillus). Палочки, у которых диаметр споры превышает ширину вегетативной клетки, принято называть клостридиями (Clostridium).

В зависимости от взаимного расположения клеток палочковидные бактерии подразделяют на одиночные и бессистемные скопления, диплобактерии и диплобациллы (располагающиеся попарно), а также стрептобактерии и стрептобациллы (формы, образующие длинные или короткие цепочки). Сапрофиты и патогенные виды. Например, Bacillus anthracis, Clostridium tetani.

К палочковидным формам также относят коринебактерии и фузобактерии.

Коринебактерии….греч. korync — булава) — прямые или изогнутые палочки с булавовидными утолщениями на концах. Сапрофиты, патогенны для животных и человека. Например, Corynebacterium pseudotuberculosis и др.

Фузобактерии — длинные, толстые, с заостренными концами палочки. Имеются патогенные виды — возбудитель некробактсриоза (Fusobacterium necrophorum).

Извитые бактерии. Обладают спиральной симметрией. К ним относятся вибрионы, спириллы и спирохеты.

Вибрионы (лат. vibrio — извиваюсь). Клетки вибрионов имеют цилиндрическую изогнутую форму, образуя 1/4—1/2 завитка спирали, и напоминают запятую. Сапрофиты и патогенные. Например, Vibrio cholerae.

Спириллы (лат, spira — изгиб) — бактерии, имеющие форму спирально извитых палочек с 4—6 витками. Обитают в пресной и морской воде. Преимущественно сапрофиты (Spirillum volutans); к патогенным видам относятся S. minus и кампилобактсры (Campylobacter fetus).

Спирохеты (spirochaeta; греч. speira — изгиб и chaite — длинные волосы) — прокариоты спирально извитой формы. У спирохет выявляется два типа витков: первичные — образованные изгибами протоплазматического цилиндра, и вторичные — представляющие изгибы всего тела. Спирохеты — эластичные спиралевидные длинные клетки, состоящие из осевой нити (аксистиля), цитоплазмы с рибосомами и включениями, нуклеоида, мезосом, цитоплазматической мембраны и клеточной стенки. Тонкая эластичная клеточная стенка состоит из наружной липопротеидной мембраны и несплошного слоя паптидогликана. Осевая нить растянута на всю длину клетки, выполняет локомоторную и опорную функции, содержит пучок из 2—150 аксиальных (опорных) фибрилл, состоящих из аминосахара кутина. Количество и величина фибрилл у разных видов неодинаковы. Протоплазматический цилиндр упакован спиралевидно и окружен аксиальными фибриллами, прикрепляющимися к дискам на его концах. Фибриллы заключены в перипласте (между цитоплазматической мембраной и клеточной стенкой). Движение спирохет осуществляется за счет активного сокращения осевой нити и протоплазматического цилиндра; формы движения разнообразны: вращательное, поступательное, сгибательное.

Размножаются поперечным делением. В неблагоприятных условиях спирохеты могут переходить в цисту — укороченную и свернутую в спираль, окруженную прочной оболочкой клетку.

По морфологии (размерам, числу и форме завитков), количеству осевых фибрилл, характеру движения, типу биологического окисления, экологии, патогенности в пределах группы спирохет дифференцируют: спирохеты, кристиспиры, трепонемы, боррелии и лептоспиры.

Спирохеты и кристиспиры обитают в открытых водоемах, иле, сточных водах; для позвоночных непатогенны. Кристиспиры — гигантские прокариоты (28—150 мкм) спирально изогнутой формы с плоской зернистой килевидной мембраной (криста), идущей вдоль тела клетки. Число фибрилл более 100.

Трепономы — спиралевидно извитые эластичные бактерии, размер 0,1—0,5, 5—20 мкм; осевая нить состоит из 1 или 4 фибрилл; хорошо выражены равномерные или неравномерные завитки; подвижны. Типовой вид — Treponema pallidum.

Боррелии — извитые нитевидные бактерии, размер 0,2— 0,5 Х5—30 мкм; осевая нить состоит из 15—20 параллельных фибрилл.

Лептоспиры — спиралевидные бактерии диаметром 0,1—0,25 мкм и длиной 6—30 мкм, формирующие около 20 мелких, тесно расположенных первичных завитков и 1—2 вторичных, придающих клетке форму, букв Г, S, С. Осевая нить состоит из 2 фибрилл. Главный тип движения — вращательно-поступательный. Например, Leptospira interrogans.

Бактерии не видимы невооруженным глазом. Поэтому для их изучения используют световые и электронные микроскопы. Клетки бактерий измеряются в микрометрах (1 мкм =10" м), элементы тонкого строения — в нанометрах (1нм = 10 м). Предел разрешения светового микроскопа составляет 0,2 мкм, современных моделей электронных микроскопов — 0,15—0,3 нм. Средние размеры прокариот лежат в пределах 0,5—3 мкм. Наиболее стабильны кокчи — их размер 0,5—2 мкм. Палочковидные формы обычно длиной 2—10 и шириной 0,5—1 мкм, мелкие палочки соответственно 0,7—1,5 и 0,2—0,4 мкм.

В 1967 г. Адлер описал мини-клетки. Они примерно в 10 раз меньше исходных бактерий, не содержат хромосомную ДНК и имеют только плазмидную. Среди бактерий могут быть гиганты, достигающие в длину 125 мкм и более. Размеры спирохет 0,2—0,75 х 5—500 мкм.

Морфология микроорганизмов изучает форму и строение их клеток, способы передвижения и размножения. Микроорганизмы различаются по внешнему виду и по размерам. Строение клеток микроорганизмов также различно, в связи с чем они относятся к различным систематическим группам.

Все живые организмы на Земле, имеющие клеточное строение, делят на два надцарства: прокариоты и эукариоты. Это деление живых организмов основано главным образом на особенностях строения ядерного аппарата. В клетках прокариот ядро отсутствует. Ядерный аппарат их представлен молекулой ДНК, расположенной в ядерной зоне непосредственно в цитоплазме. Клетки эукариот имеют ядро, отделенное от цитоплазмы двойной ядерной мембраной.

БАКТЕРИИ

Известно около 4000 видов бактерий. Их разнообразие особенно выражено в отношении физиолого-биохимических свойств. В определенной степени оно проявляется и в морфологии.

Величина клеток различных бактерий сильно варьирует. Размеры многих бактериальных форм находятся в пределах 0,5-10 мкм. Однако величина ряда бактерий не укладывается в эти границы. Среди них есть немало относительно крупных форм, есть и крайне мелкие формы. Значительной длины достигают, например, нитчатые бактерии рода Beggiatoa - до 60 мкм и более и Saprospira - до 500 мкм. Это одни из наиболее крупных бактерий. Гигантские формы встречаются среди спирохет: длина некоторых достигает 500 мкм. Мельчайшие из известных организмов клеточного строения - микоплазмы. Размеры отдельных форм микоплазм не превышают 0,1-0,2 мкм, что лежит на границе или даже за пределами разрешающей способности светового микроскопа. У одного и того же вида бактерий размеры клеток могут в большей или меньшей степени варьировать в зависимости от возраста культур и (или) от условий культивирования. У многих бактерий особенно заметно меняется длина клетки. Диаметр клеток является более устойчивым признаком.

Основная масса бактерий - одноклеточные организмы. Но нередко клетки после деления не расходятся и образуют сочетания различной формы, которая определяется расположением делящей перегородки. Эти сочетания не равноценны многоклеточным организмам, так как каждая клетка в них автономна и может существовать самостоятельно после отделения от остальных клеток.

Бактерии, за исключением микоплазм, имеют определенную форму клетки. У большинства бактерий она поддерживается благодаря прочной (ригидной) клеточной стенке. Клеточная стенка спирохет эластична, и их извитая форма поддерживается с помощью аксиальных фибрилл, расположенных под клеточной стенкой. Форма клетки многих бактерий отличается постоянством и сохраняется в течение всей жизни. Но есть бактерии, у которых наблюдается более или менее выраженный плеоморфизм. Нередко он отражает стадии цикла развития микроорганизма. В этом случае обнаруживается упорядоченное, регулярное чередование определенных форм. Изменения морфологии могут происходить и под влиянием условий культивирования. Полиморфность микоплазм связана с отсутствием у них клеточной стенки.

Морфологические типы бактерий по сравнению с высшими организмами немногочисленны. Клетки значительной части бактерий имеют сферическую, цилиндрическую или спиралевидную форму. Существует обширная группа ветвящихея бактерий, сравнительно небольшое количество нитчатых форм и бактерий, образующих выросты (простеки).

Сферические бактерии - кокки. Под микроскопом они имеют форму шара. Многим коккам свойственно образование различных сочетаний (рис. 2). Кокки, делящиеся в одной плоскости и одном направлении, могут образовывать пары (диплококки) или цепочки (стрептококки) клеток. Когда деление происходит равномерно в двух взаимно перпендикулярных плоскостях, возникают группы

Рисунок 2. Сочетания кокков: 1 - диплококки; 2 - стрептококки; 3 - тетракокки и сарцины; 4 - стафилококки и микрококки

из четырех клеток - тетракокки, а если в трёх, то образуют пакеты правильной формы - сарцины. При неравномерном делении в нескольких плоскостях наблюдаются скопления неправильной формы, напоминающие гроздь винограда. Они свойственны представителям стафилококков и микрококков. Микрококками часто называют и одиночные шаровидные клетки.

Под влиянием различных факторов среды некоторые кокки могут превращаться в овальные, конические и эллипсоидные клетки.

Цилиндрические (палочковидные) бактерии под микроскопом имеют вид палочек. Это одна из наиболее многочисленных групп бактерий. Разные виды могут заметно отличаться друг от друга размерами клеток. Одной из самых крупных палочковидных бактерий является Васilllus megaterium. Ее длина 5-10 мкм, поперечник около 1 мкм. К наиболее коротким относятся риккетсии, размеры которых могут быть всего 0,3 Х 1,0 мкм. В тех случаях, когда длина лишь ненамного превышает диаметр клетки, палочки трудно отличить от кокков. Концы палочек бывают прямыми, округлыми или заострёнными (рис. 3).

Рисунок 3. Палочковидные бактерии: 1 - Pseudomonas aeruginosa ; 2 - Bacillus mycoides ; 3 - Васillus megaterium ; 4 - Cytophaga

Палочковидные бактерии нередко образуют пары или цепочки клеток. Парные сочетания клеток наблюдаются, например, у определенных видов рода Pseudomonas , длинные цепочки можно увидеть в культуре Bacillus mucoides . Для ряда палочковидных бактерий характерен выраженный плеоморфизм.

Изменение формы, связанное с развитием бактерий, наблюдается у видов Azotobacter и Rhizobium ; у миксобактерий и риккетсий. Так уже в молодой культуре азотобактера можно видеть клетки не только палочковидной, но и овальной или кокковидной формы. Они часто соединяются попарно или образуют скопления, а иногда цепочки из 4 и более клеток. В старых культурах преобладают крупные округлые, неправильной формы покоящиеся клетки-цисты.Риккетсии, помимо коротких палочек длиной 1-1,5 мкм могут быть представлены кокками диаметром менее 0,5 мкм, длинными палочками - 3-4 мкм, или причудливо изогнутыми нитями, длина которых достигает 40 и более микрометров. Есть бактерии, у которых изменение формы клетки связано со спорообразованием.

В неблагоприятных условиях в культурах многих палочковидных бактерий возникают различные дегенеративные формы с признаками лизиса, гранулированием содержимого, большими вакуолями и др. Это можно наблюдать, например, в культуре Bacillus megaterium (рис. 3).

Рисунок 4 Извитые формы: 1 - вибрионы; 2 - спириллы; 3 - спирохеты

Бактерии, образующие выросты (простеки). Основную часть этой группы составляют бактерии, у которых простеки - это выпячивания клеточного содержимого, окруженного клеточной стенкой цитоплазматической мембраной и не отделенного от клетки перегородкой. У одних бактерий, например у видов рода Hyphomicrobium, образование выростов связано с размножением. Клетки представителей этого рода чаще имеют вид палочек с заостренными концами, но бывают также овальной, яйцеобразной или бобовидной формы. Нитевидные выросты образуются на одном или обоих полюсах клетки. Bыросты могут ветвиться, давая гифоподобные структуры. На конце каждой ветви формируется почка, являющаяся дочернеи клеткой. Иногда созревшие почки не отделяются от материнской клетки и тоже образуют выросты и почки. Тогда возникает скопление гиф и клеток (рис. 5).

Рисунок 5 Бактерии, образующие выросты: 1 - Caulobacter ; 2 - Hyphomicrobium ; 3 - Ancalomicrobium ; 4 - Gallionella

У других бактерий простеки не имеют отношения к размножению. К таким бактериям принадлежат, например, виды рода Caulobacter и Ancalomicrobium . Клетки Caulobacter - это слегка изогнутые палочки с одним полярным жгутиком. Сравнительно короткий вырост - стебелек возникает на одном полюсе клетки. На конце стебелька имеется небольшое утолщение из липкого материала - фиксатор. С его помощью клетки прикрепляются к какому-либо субстрату, а иногда друг к другу. В последнем случае образуются характерные скопления. У видов Аnсаlomicrobium на клетке неправильной формы возникает несколько простеков - от 2 до 8. Клетка приобретает причудливый звездообразный вид.

Иногда к стебельковым относят бактерии, образующие слизистые придатки, не связанные с цитоплазмой клетки. Это, например, виды Gallionella, бобовидные клетки которой выделяют с вогнутой стороны слизь в виде тонкой нити. Под микроскопом такая нить выглядит как спирально изогнутая лента.

Рисунок 6. Нитчатые бактерии: 1 - Beggiatoa ; 2 - Thiothrix ; 3 - Saprospira ; 4 - Simonsiella ; 5 - Caryophanon ; 6 - цианобактерии класса Hormogoneae ; 7 - Leptothrix ; 8 - Sphaerotilus ; 9 - Crenothrix

Это сравнительно небольшая группа многоклеточных организмов. Они представляют собой цепочки (трихомы) из цилиндрических, овальных или дисковидных клеток. Типичными представителями нитчатых форм являются бактерии родов Beggiatoa и Thiothrix (рис.6). Их нити имеют равную толщину на всем протяжении. Трихомы видов Thiothrix собраны в пучки и прикрепляются основанием к субстрату. Нити Leucothrix , подобно Thiothrix , большей частью также растут пучком, прикрепляясь к твердой поверхности, но, в отличие от Thiothrix , они сужаются к концу.

Трихомы видов Saprospira скручены в виде спирали, а у видов Simоnsiella они уплощены и похожи на ленты. У видов Caryophanoп поперечные клеточные стенки большинства составляющих нити клеток не сплошные, так как их формирование отстает от роста трихома. Нитчатые бактерии относятся к крупным микроорганизмам. Так, длина нитей некоторых представителей рода Caryophanon достигает 40 мкм, а толщина 4 мкм. Нити зеленых бактерий группы Chloroflexus могут иметь длину 300 мкм. Особенно длинные трихомы образуют, как уже отмечалось, виды Beggiatoa и Saprospira (до 500 мкм).

Ветвящиеся бактерии. К этой многочисленной группе относятся истинные актиномицеты, нокардии, микобактерии, коринеподобные бактерии и ряд других организмов. Истинные актиномицеты имеют сильноразветвленный мицелий, сохраняющийся в течение всей жизни, что делает их внешне сходными с мицелиальными грибами (рис. 7). Однако общая длина нитей актиномицетов обычно не превышает нескольких миллиметров, а толщина составляет всего 0,5-1,5 мкм, тогда как длина грибного мицелия достигает нескольких сантиметров, а диаметр может быть около 50 мкм. У представителей рода Streptomyces в мицелии образуются перегородки, но их мало, поэтому составляющие его клетки в основном многоядерные. Мицелий большинства актиномицетов лишен перегородок, и этим он напоминает многоядерный несептированный мицелий фикомицетов.


Рисунок 7. Мицелий актиномицета (1) и гриба (2) при одинаковом увеличении

У нокардий и микобактерий мицелиальный тип развития имеет временный и часто ограниченный характер. Виды рода Nocardia образуют обильный, недифференцированный мицелий на начальных стадиях развития. В дальнейшем он распадается на палочковидные или сферические фрагменты.

Микоплазмы . Это довольно большая группа бактерий, у которых нет клеточной стенки. Поэтому они очень полиморфны. В культуре одного вида можно одновременно обнаружить мелкие зерновидные образования, кокковидные, эллипсовидные, грушеобразные, дисковидные, палочковидные и даже разветвленные и неразветвленные нитевидные формы (рис. 8).Размеры крупныхклеток микоплазмдостигают 10 мкм, а величина мелких структур не превышает 0,1 мкм.


Рисунок 8.

Большинство бактерий размножаются путем бинарного поперечного изоморфного деления. Такой способ размножения свойствен коккам, многим палочковидным формам и вибрионам, спириллам, спирохетам, некоторым нитчатым бактериям. Клетки основной массы бактерий делятся в одной плоскости. У многих кокков деление происходит в нескольких плоскостях. Расходящиеся после деления клетки большинства бактерий располагаются одна за другой или беспорядочно, а у видов Arthrobacter и Corynebacteriuт под углом друг к другу. Если после деления клетки не расходятся, то наблюдается образование различных скоплений клеток - пар, цепочек, пакетов и другие. В ряде случаев имеет место неравномерное деление. Фрагментацией мицелия или его рудиментов на палочки и кокки размножаются, например, виды Nocardia и Mycobacteriuт . Размножение распадом нитей на участки наблюдается у Beggiatoa и Saprospira . Две неодинаковые клетки - одна подвижная со жгутом, но без простеки, а другая неподвижная без жгутика, но со стебельком - образуются при делении клеток Caulobacter (рис. 9). К делению способны только неподвижные клетки с простекой.

Некоторые бактерии (виды Hyphoтicrobiuт и Rhodopseudoтona s, Ancaloтicrobiuт и др.) размножаются почкованием. У Rhodopseudoтoпas и Aпcaloтicгobiuт почки формируются прямо на поверхности клеток, а у Hyphoтicrobiuт - на концах гиф.

Рисунок 9. Схема роста и деления клеток Caulobacter

Рисунок 10. Гонидии (1) и гормогонии (2) нитчатых бактерий

У бактерий известны и более сложные способы размножения. Нитчатые цианобактерии класса Chaтaesiphoneae и бактерии родов Thiothrix, Caryophanon , Sphaerotilus , Leptothrix , Leucothrix размножаются с помощью специальных репродуктивных одиночных подвижных клеток - гонидий (рис. 10), которые образуются в результате многократного деления концевых клеток нити. Подвижность гонидий связана с наличием у них жгутиков. Для нитчатых цианобактерий класса Horтogoпeae характерно размножение гормогониями. Это короткие цепочки, возникающие, как и гонидии, при делении клеток нити. Они не имеют жгутиков и перемещаются скольжением благодаря выделению слизи. Размножение гормогониями наблюдается также у видов Leucothrix.

Актиномицеты размножаются главным образом подвижными или неподвижными спорами (конидиями). Конидии располагаются поодиночке или цепочками, непосредственно на мицелии, на концах спороносящих гиф - спорангиеносцах (спорангиофорах) или в специальных органах спороношения - спорангиях. Спорангиеносцы (и соответственно цепочки спор) разных видов различаются между собой. Они могут быть длинными или короткими, прямыми, волнистыми или спиралевидными; иметь последовательное, супротивное или мутовчатое расположение (рис. 11). Спорангии бывают сферической или неправильной формы (рис. 12), в них формируются эндогенные споры.

Существует немало бактерий, которые могут размножаться несколькими способами. Например, представители рода Rhizobiuт размножаются делением и почкованием, актиномицеты - спорами и кусочками вегетативного мицелия. Нитчатые цианобактерии размножаются гонидиями или гормогониями, а также путем распада трихома на отдельные участки, бактерии рода Chloroflexus - бинарным делением и участками нити. Caryophanon и Sphaerotilus - с помощью гонидий и поперечным изоморфным делением трихома, Leucothrix гонидиями и гормогониями. У микоплазм можно наблюдать бинарное деление, фрагментацию нитей и крупных клеток до кокков, а также процесс, напоминающий почкование.

Рисунок 11 Форма воздушных спороносцев у актиномицетов


Рисунок 12. Спорангии актиномицетов: 1 - Actinoplanes; 2 - Amorphosporangium; 3 - Spirillospora

Многие бактерии неподвижны. Неподвижными являются почти все кокки, более 50% палочковидных бактерий, почкующиеся и ветвящиеся бактерии, значительная часть нитчатых форм, риккетсии, микоплазмы. Способностью к движению обладает примерно 1/5 часть бактерий. Подвижность большинства из них обусловлена наличием специальных локомоторных структур - жгутиков. Жгутики обнаруживаютсяу некоторых кокков (отдельные представители рода Methylococcus ), ряда палочковидных бактерий (виды Bacillus , Clostridiuт , Pseudoтoпas , Rhizobium , Azotobacter , Escherichia и др.), у вибрионов и спирилл, у нитчатых бактерий рода Caryophanon . У бактерий некоторых групп специальные репродуктивные клетки со жгутиками появляются только в определенной стадии развития. Это подвижные клетки каулобактерий, гонидии большинства нитчатых организмов, споры (конидии) некоторых актиномицетов (виды Actinoplaпes и Geoderтatopftilus ).

Рисунок 13. Типы жгутикования у бактерий: 1 - монотрихиальное; 2 - лофотрихиальное; 3 - латеральное; 4 - амфитрихиальное; 5 - перитрихиальное; 6 - «смешанное» полярно - перитрихиальное

Жгутики берут начало под цитоплазматической мембраной и через поры мембраны и клеточной стенки выходят наружу. У разных бактерий длина жгутиков колеблется от 3 до 20 мкм, толщина - от 10 до 20 им, а их число - от 1 до 100. Жгутики могут быть расположены монополярно, биполярно, вдоль боковой или по всей поверхности клетки (рис. 13). Клетки некоторых бактерий имеют одновременно два разных набора жгутиков: полярные и перитрихиальные, различающиеся по длине и толщине.

Наличие, число, размеры и расположение жгутиков имеют диагностическое значение. Например, виды рода Vibrio снабжены одним полярным жгутиком, у Selenoтonas один жгутик прикрепляется сбоку. Для представителей рода Pseudoтonas характерно монотрихиалыюе или лофотрихиальное монополярное жгутикование, а для спирилл лофотрихиальное моно- и биполярное. Перитрихиальное расположение жгутиков свойственно видам Clostridium, Escherichia, Rhizobium, Саryophanon и др. Нередко в пределах одного рода бактерий обнаруживаются подвижные и неподвижные виды, а у подвижных форм может быть разный тип жгутикования. Так, у подвижных представителей рода Bacillus жгутики расположены латерально или перитрихиально.

Активное движение большинства бактерий, обладающих жгутиками, возможно только в жидкой среде. Однако некоторые бактерии - перитрихи могут передвигаться и по твердому субстрату. К ним относится, например, Proteus vulgaris , который довольно быстро распространяется по поверхности. влажной агаризованной среды, образуя обширный тонкий налет. Движение жгутиконосных бактерий наблюдается преимущественно в молодых культурах. С возрастом клетки постепенно теряют жгутики и становятся неподвижными, хотя и сохраняют жизнеспособность.

К подвижным формам относятся спирохеты, миксобактерии, многие нитчатые цианобактерии и флексибактерии, не имеющие жгутиков.

Они способны передвигаться по твердому или полутвердому субстрату

путем скольжения. Спирохеты могут перемещаться и в жидкой среде

вращательными, легкими волнообразными движениями. Скользящее

движение обусловлено, возможно, неравномерным выделением слизи

через поры клеточной стенки. Подвижность спирохет и некоторых миксобактерий (виды Myxococcus ) связывают также с сокращением аксиальных микрофибрилл, расположенных под клеточной стенкой (у спирохет) или под цитоплазматической мембраной (у миксобактерий).

К покоящимся формам бактерий относятся эндоспоры, цисты, акинеты. Они позволяют клетке более или менее длительное время переносить неблагоприятные условия. В условиях, подходящих для роста, покоящиеся формы развиваются в обычную вегетативную клетку.

Эндоспоры. Способностью образовывать эндоспоры обладают палочковидные бактерии, относящиеся к родам Bacillus, Clostridiuт и

Desulfotoтaculuт, а также некоторые кокки (род Sporosarcina) и термофильные актиномицеты рода Therтoactinoтyces. Спорообразование представляет собой сложный процесс дифференцировки, начинающийся в культуре, когда она переходит в стационарную фазу роста и когда создаются условия, индуцирующие его. Эти условия весьма разнообразны: дефицит питательных веществ в среде, накопление продуктов метаболизма, изменение кислотности среды, температуры и др. В результате внутри вегетативной клетки образуется новая клетка - эндоспора, полностью отличающаяся от материнской по структуре, химическому составу и физиологическим свойствам. Эндоспоры одеты толстыми многослойными труднопроницаемыми покровами и имеют очень низкое содержание воды, поэтому при микроскопическом исследовании их легко узнать по высокой светопреломляющей способности.

Форма клеток многих бактерий в процессе спорообразования не меняется. Эндоспора локализуется в центре клетки, эксцентрально или (и) терминально, что зависит от вида бактерий. Это так называемый бациллярный тип спорообразования (рис. 14, 1 ). У ряда бактерий середина клетки при формировании споры несколько расширяется, и клетка приобретает вид челнока или веретена. Спора располагается в утолщенной части - в центре клетки или эксцентрально (рис. 14, 2 ). Это - клостридиальный тип спорообразования. У некоторых бактерий клетка при спорообразовании сильно расширяется и округляется на одном конце, становясь похожей на барабанную палочку. Спора локализуется в расширенном конце (рис. 14, 3 ). Такой тип спорообразования называется плектридиальным. Бациллярный тип спорообразования свойствен многим представителям рода Bacillus, клостридиальный и плектридиальный - в основном видам рода Clostridiuт. Нередко в культуре одного вида этого рода встречаются одновременно и клостридиальные и плектридиальные формы.

Рисунок 14. Типы образования эндоспор у бактерий: 1 - бациллярный; 2 - клостридиальный; 3 - плектридиальный

Эндоспоры бывают округлой, овальной или эллипсовидной формы. Их оболочка может быть гладкой или с выростами. Диаметр эндоспор ряда бактерий значительно превышает поперечник клетки. Тип спорообразования, а также форма, размеры и расположение эндоспоры в вегетативной клетке используются для диагностики бактерий.

В каждой вегетативной клетке формируется, как правило, только одна эндоспора. После созревания эндоспоры освобождаются вследствие лизиса материнских клеток и переходят в стадию покоя. Эндоспоры чрезвычайно устойчивы к различным неблагоприятным факторам и могут сохранять жизнеспособность в течение многих лет, пока не попадут в условия, способствующие их прорастанию.

Спорообразование - не обязательная стадия развития бактерий. Можно создать такие условия, в которых клетки не будут переходить к формированию спор.

Цисты обнаруживаются у миксобактерий, риккетсий, представителей родов Azotobacter , Bdellovibrio , Arthrobacter . Их образование происходит обычно на поздних стадиях развития бактерий и связано с неблагоприятными условиями культивирования - исчерпанием питательного субстрата, загрязнением среды вредными продуктами обмена, высушиванием и т. д. Цисты можно увидеть только в старых культурах.

Цисты бывают сферическими, овальными, неправильно округлыми или в виде сильно укороченных палочек. Чаще всего они крупнее вегетативных клеток. Иногда же по форме и размерам цисты почти не отличаются от них. У большинства бактерий цисты имеют утолщенную клеточную стенку и уплотненную цитоплазму, поэтому они сильнее преломляют свет, чем вегетативные клетки. Цисты устойчивее вегетативных клеток к неблагоприятным факторам, но уступают в этом эндоспорам.

Акинеты свойственны определенным видам нитчатых цианобактерий. Это крупные толстостенные клетки (рис. 15), возникающие либо из одной вегетативной клетки, либо путем слияния многих клеток. У некоторых цианобактерий акинеты обнаруживаются всегда и являются, вероятно, обязательной стадией развития, у других они образуются только в неблагоприятных условиях.

Рисунок 15. Акинеты (а) и гетероцисты (Г) нитчатой цианобактерии Cylindrospermum

Клетки всех бактерий, за исключением микоплазм, покрыты снаружи клеточной стенкой, толщина которой у разных видов колеблется в пределах 0,01-0,04 мкм. В соответствии с различиями в химическом составе клеточных стенок и их ультраструктуре, выражающимися в неодинаковой способности клеточных стенок удерживать красители трифенилметанового ряда с йодом, прокариотные микроорганизмы делятся на две группы. К одной относятся бактерии, в клетках которых комплекс, образуемый кристаллическим или генциановым фиолетовым и йодом, не обесцвечивается при последующей обработке спиртом. К другой группе принадлежат бактерии, не обладающие свойством удерживать краситель и обесцвечивающиеся при обработке спиртом. Этот способ дифференциальной окраски бактерий был предложен в 1884 году датским физиком Христианом Грамом. Бактерии, которые способны окрашиваться по Граму, называются грамположительными, а не способные окрашиватьсся - грамотрицательными. К первой группе относится большинство кокковых форм, спорообразующие палочковидные бактерии родов Bacillus и Clostridium , нитчатые бактерии Сагуорhanon , ветвящиеся бактерии. Ко второй приyадлежат различные палочковидные бактерии, не образующие эндоспор (роды Pseudoтonas , Escherichia и др.), простекобактерии, миксобактерии, риккетсии, многие нитчатые формы, спириллы, спирохеты, некоторые кокки и др. Химический состав и строение клеточных стенок грамотрицательных микроорганизмов значительно сложнее, чем грамположительных.

С особенностями химического состава клеточных стенок связывают и кислотоустойчивость микобактерий. Она выражается в способности клеток, фиксированных и окрашенных при подогревании карболовым фуксином, прочно удерживать окраску после обработки раствором минеральной кислоты или подкисленным спиртом.

Определенными способами, например, под действием лизоцима, бактериальные клетки могут быть лишены клеточных стенок. В таком виде они способны существовать только в изотонической питательной среде.

Клеточная стенка многих бактерий снаружи может быть окружена слизистым слоем - капсулой. Капсулы бывают полисахаридной, иногда гликопротеидной или полипептидной природы. Капсулы толщиной менее 0,2 мкм, неразличимые в световом микроскопе, называют микрокапсулами. Капсула и клеточная стенка являются поверхностными структурами бактериальной клетки, к которым относят также жгутики и обнаруживаемые у многих подвижных и неподвижных бактерий ворсинки (фимбрии, пили). Ворсинки короче и тоньше большинства жгутиков - их длина 3-4 мкм, диаметр 4-35 нм. Число ворсинок у разных бактерий бывает от нескольких единиц до многих тысяч. К подвижности бактерий они, по-видимому, не имеют отношения. Капсулы и ворсинки не являются необходимыми клеточными структурами. Бактерии нормально функционируют и без них.

Обязательной структурой любой клетки является цитоплазматическая мембрана, которая отделяет цитоплазму от клеточной стенки. Толщина мембраны. 5-10 нм. При нарушении ее целостности клетки утрачивают жизнеспособность. Цитоплазма ряда бактерий пронизана мембранными структурами, которые являются производными цитоплазматической мембраны. У гетеротрофных бактерий их называют мезосомами. Они имеют вид пластинок (ламелл), пузырьков (везикул) или трубочек. Мезосомы могут быть расположены в зоне клеточного деления, вблизи нуклеотида и на периферии клетки, недалеко от цитоплазматической мембраны. У грамположительных бактерий мезосомальные структуры развиты в большей степени, чем у грамотрицательных. У фототрофных бактерий мембранные образования в виде пузырьков называют хроматофорами, а уплощенной формы - тилакоидами. Есть бактерии, у которых мембранная система не обнаруживается.

Определенную область в цитоплазме бактериальной клетки занимает нуклеоид. Он состоит из одной двойной спирально закрученной нити ДНК, замкнутой в кольцо. Ядерный аппарат прокариот не имеет ядрышка и не отделен от цитоплазмы мембраной. Через мезосомы нуклеоид связан с цитоплазматической мембраной. В период интенсивного деления в клетках ряда бактерий (Escherichia соli , Oscillatoria атоеnа ) можно обнаружить несколько нуклеоидов.

В цитоплазме бактерий в свободном виде или в связи с мембранными структурами находятся рибосомы. Они имеют константу седиментации 70S, их размеры колеблются в пределах от 15 до 30 нм. Число рибосом может быть от 5 до 50 тыс., что зависит от возраста клетки и условий культивирования. Рибосом больше в молодых клетках.

В клетках различных бактерий часто обнаруживаются включения

запасных веществ. Это полисахариды, липиды, полифосфаты, сера. Они накапливаются при избытке тех или иных питательных веществ в окружающей среде, а расходуются при голодании. Из резервных полисахаридов особенно распространены глюканы: гликоген, крахмал и крахмалоподобное вещество - гранулёза. Они выявляются в клетках спорообразующих бактерий родов Bacillus и Сlоstгidium , а также у пурпурных бактерий и др. Полисахариды откладываются в цитоплазме равномерно или в виде гранул. Запасные липиды 6актерий представлены полиэфиром - оксимасляной кислоты и восками. Полиоксибутират накапливается на средах с избытком углерода у многих

бактерий: видов Bacillus , Pseudoтanas, Spirilluт , Azotobacter , Sphaerotilus и др. Он обнаружен только у прокариот. Воска - эфиры высокомолекулярных жирных кислот и спиртов характерны для микобактерий. Полисахариды и липиды служат хорошим источником углерода и энергии для клетки.

В условиях, препятствующих синтезу нуклеиновых кислот, у многих бактерий создается резерв фосфора в виде гранул полифосфатов. Впервые они были описаны у Spirillит volutans , поэтому их назвали волютином. Эти образования называют также метахроматиновыми зернами, так как они проявляют метахроматический эффект: приобретают красную окраску при обработке синим красителем.

Отдельные виды спорообразующих бактерий (Bacillus thuringiensis , Bacillus cereus , Bacillus popilliae и др.) в определенных условиях образуют в клетках кристаллы белковой природы, которые имеют правильную бипирамидальную форму и расположены непосредственно около споры. Их называют параспоральными тельцами.

Некоторые бактериальные структуры и включения, сильно преломляющие свет (эндоспоры, аэросомы, отложения полиоксибутирата и серы), хорошо заметны в световом микроскопе без специальной обработки. Часть структур (жгутики, клеточная стенка, нуклеоид, волютин и др.) можно выявить с помощью светооптического микроскопа только после окрашивания соответствующими красителями. Ряд структурных элементов бактерий - микрокапсулы, ворсинки, мезосомы, рибосомы и др. различимы только в электронном микроскопе (рис.16).

Рисунок 16. Схема строения бактериальной клетки: 1 - рибосомы, 2 - начавшееся образование поперечной перегородки, 3 и 4 - запасные отложения, 5 - ядерный район, 6 - капсула, 7 - стенки клетки, 8 - протоплазматическая мембрана, 9 - зерно, от которого начинается жгутик

Лекция № 5 Морфология и систематика микроорганизмов. Прокариоты (бактерии и актиномицеты).

1 Морфология и систематика микроорганизмов. Морфология микроорганизмов изучает их внешний вид, форму и особенности строения, способность к движению, спорообразованию, способы размножения. Морфологические признаки играют большую роль в распознавании и классификации микроорганизмов. С древнейших времен живой мир делили на два царства: царство растений и царство животных. Когда был открыт мир микроорганизмов, то их выделили в отдельное царство. Таким образом, до Х1Х века весь мир живых организмов делили на три царства. В начале в основу классификации микроорганизмов были положены морфологические признаки, так как больше о них человек ничего не знал. К концу Х1Х века было описано много видов; разные ученые, в основном ботаники, делили микроорганизмы на группы, принятые для классификации растений. В 1897 году для систематики микробов стали использовать, наряду с морфологическими, и физиологические признаки. Как выяснилось впоследствии, для научно обоснованной классификации одних каких-либо признаков бывает недостаточно. Поэтому используют комплекс признаков:

Морфологические (форма клеток, размеры, подвижность, размножение, спорообразование, окраска по Граму);

Культуральные (характер роста на жидких и плотных питательных средах);

Физиолого-биохимические (характер накапливаемых продуктов);

Генотипические (физико-химические свойства ДНК).

Геносистематика позволяет определить вид микроорганизмов не по сходству, а по родству. Установлено, что нуклеотидный состав суммарной ДНК в процессе развития микроорганизмов в разных условиях не изменяется. Идентичны по составу ДНК S- и R-формы. Обнаружены и такие микроорганизмы, которые имеют сходный нуклеотидный состав ДНК, хотя и относятся к разным систематическим группам: кишечные палочки и некоторые коринебактерии. Это указывает на то, что при систематике (таксономии) микробов следует учитывать разные признаки.

До недавнего времени все живые существа клеточного строения в зависимости от взаимоотношения ядра и органелл с цитоплазмой, состава клеточной стенки и других признаков делили на две группы (царства):

1.1 Прокариоты-доядерные (отнесены – организмы, не имеющие четко выраженного ядра, представленного молекулой ДНК в форме кольца; в состав клеточной стенки входит пептидогликан (муреин) и тейхоевые кислоты; рибосомы имеют константы седиментации 70; энергетические центры клетки находятся в мезосомах и отсутствуют органеллы).

1.2 Эукариоты-ядерные (с четко выраженным ядром, отделенным от цитоплазмы оболочкой; в клеточной стенке отсутствует пептидогликан и тейхоевые кислоты; рибосомы цитоплазмы крупнее; константа седиментации 80; энергетические процессы осуществляются в митохондриях; из органелл имеется комплекс Гольджи и др.).

В дальнейшем оказалось, что среди микроорганизмов есть и неклеточные формы-вирусы и поэтому выделили третье группу (царство) - вира.

Для обозначения микроорганизмов принята двойная (бинарная) номенклатура, которая включает в себя название рода и вида. Родовое название пишется с прописной буквы (заглавной), видовое (даже происходящее от фамилии)- со строчной (маленькой). Например, бациллу сибирской язвы называют Bacillus anthracis, кишечную палочку- Escherichia coli, аспергилл черный-Aspergillus niger.

Основной (низшей) таксономической единицей является вид. Виды объединяются в роды, роды - в семейства, семейства -в порядки, порядки - в классы, классы - в отделы, отделы - в царства.

Вид- это совокупность особей одного генотипа с явно выраженным фенотипическим сходством.

Культура - микроорганизмы, полученные от животного, человека, растения или субстрата внешней среды и выращенные на питательной среде. Чистые культуры состоят из особей одного вида (потомство, полученное из одной клетки - клон).

Штамм- культура одного и того же вида, выделенная из различных сред обитания и отличающиеся незначительными изменениями свойств. Например, кишечная палочка, выделенная из организма человека, крупного рогатого скота, водоемов, почвы, могут быть разными штаммами.

2 Прокариоты (бактерии и актиномицеты). Бактерии (прокариоты)-это большая группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные. Форма и размеры бактерий. Основные формы бактерий: шаровидная, палочковидная и извитая. Шаровидные бактерии - кокки имеют обычную форму шара, встречаются уплощенные, овальной или бобовидной формы. Кокки могут быть в виде клеток одиночных - монококки (микрококки) или соединенных в различных сочетаниях: попарно - диплококки, по четыре клетки - тетракокки, в виде более или менее длинных цепочек - стрептококки, а также в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим, - сарцины. Встречаются скопления неправильной формы, напоминающие грозди винограда, - стафилококки. Палочковидные бактерии могут быть одиночными или соединенными попарно - диплобактерии, цепочками по три-четыре и более клеток - стрептобактерии. Соотношения между длиной и толщиной палочек бывают самыми различными. Извитые, или изогнутые, бактерии различаются длиной, толщиной и степенью изогнутости. Палочки, слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками - спирохетами. Благодаря использованию электронного микроскопа для изучения микроорганизмов в естественных природных субстратах были обнаружены бактерии, имеющие особую форму клеток: замкнутого или разомкнутого кольца (тороиды); с выростами (простеками); червеобразной формы - длинные с загнутыми очень тонкими концами; а также в виде шестиугольной звезды.

Размеры бактерий очень малы: от десятых долей микрометра (мкм) до нескольких микрометров. В среднем размер тела большинства бактерий 0,5-1 мкм, а средняя длина палочковидных бактерий - 2-5 мкм. Встречаются бак­терии, размеры которых значительно превышают среднюю величину, а некоторые находятся на грани видимости в обычных оптических микроскопах. Форма тела бактерий, как и их размеры, может изменяться в зависимости от возраста и условий роста. Однако при определенных, относительно стабильных условиях бактерии сохраняют присущие данному виду размеры и форму. Масса бактериальной клетки очень мала, приблизительно 4- 10- 1:! г.

Строение бактериальной клетки . Клетка прокариотных организмов, к которым относятся бактерии, обладает принципиальными особенностями ультраструктуры. Клеточная стенка (оболочка) - важный структурный элемент большинства бактерий. На долю клеточной стенки приходится от 5 до 20% сухих веществ клетки. Она обладает эластичностью, служит механическим барьером между протопластом и окружающей средой, придает клетке определенную форму. В состав клеточной стенки входит специфическое для прокариотных клеток гетерополимерное соединение - пептидогликан (муреин), отсутству­ющий в клеточных стенках эукариотных организмов. По методу окраски, предложенному датским физиком X. Грамом (1884 г.), бактерии делятся на две группы: грамположительные и грамотрицателъные. Грамположительные клетки удерживают краску, а грамотрицателъные не удерживают ее, что обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок. У грамположительных бактерий клеточные стенки более толстые, аморфные, в них содержится большое количество муреина (от 50 до 90% сухой массы клеточной стенки) и тейхоевые кис­лоты. Клеточные стенки грамотрицательных бактерий более тонкие, слоистые, в них содержится много липидов, мало муреина (5-10%) и отсутствуют тейхоевые кислоты.

Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, может образовывать капсулу. Нередко по размеру капсула намного превышает бактериальную клетку. Ослизнение клеточных стенок иногда бывает настолько сильным, что капсулы отдельных клеток сливаются в слизистые массы (зоогели), в которые вкраплены бактериальные клетки. Образуемые некоторыми бактериями слизистые вещества не удерживаются в виде компактной массы вокруг клеточной стенки, а диффундируют в окружающую среду. При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Такое явление наблюдается иногда в сахаристых экстрактах из свеклы при производстве сахара. За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина. Интенсивность слизеобразования и химический состав слизи зависят от вида бактерий и условий культивирования. Капсула обладает полезными свойствами, слизь предохраняет клетки от неблагоприятных условий - у многих бактерий в таких условиях усиливается слизеобразование. Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер, служит препятствием для проникновения фагов, антител, иногда она является источником запасных питательных ве­ществ. Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки. При нарушении целостности цитоплазматической мембраны клетка теряет жизнеспособность. На долю цитоплазматической мембраны приходится 8-15% сухого вещества клетки. В мембране содержится до 70-90% липидов клетки, толщина ее 7-10 нм 1 . На срезах клеток в электронном микроскопе она видна в виде трехслойной струк­туры - одного липидного слоя и двух примыкающих к нему с обеих сторон белковых слоев. Цитоплазматическая мембрана местами впячивается внутрь клетки, образуя всевозможные мембранные структуры. В ней находятся различ­ные ферменты; она полупроницаема, играет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Местами она пронизана мембранными структурами - мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь. Мезосомы выполняют различные функции; в них и в связанной с ними цитоплазматической мембране имеются ферменты, участвующие в энергетических процессах - в снабжении клетки энергией. Хорошо развитые мезосомы обнаружены только у грамположительных бактерий, у грамотрицательных они развиты слабо и имеют более простое строение. В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения. Рибосомы рассеяны в цитоплазме в виде гранул размером 20-30 нм; рибосомы состоят примерно на 60% из рибонуклеиновой кислоты (РНК) и на 40% из белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке в зависимости от ее возраста и условий жизни может или быть 5-50 тыс. рибосом. Ядерный аппарат бактерий называют нуклеоидом. Электронная микроскопия ультратонких срезов клетки бактерий позволила установить, что носителем генетической информации клетки является молекула дезоксирибонуклеиновой кислоты (ДНК). ДНК имеет форму двойной спиральной нити, замкнутой в кольцо; ее еще называют "бактериальная хромосома". Она расположена в определенном участке цитоплазмы, но не отделена от нее собственной мембраной.

Цитоплазматические включения бактериальной клетки разнообразны, в основном это запасные питательные вещества, которые откладываются в клетках, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания. В клетках бактерий откладываются полисахариды: гликоген, крахмалоподобное вещество гранулеза, которые используются в качестве источника углерода и энергии. Липиды обнаруживаются в клетках в виде гранул и капелек. Жир служит хорошим источником углерода и энергии. У многих бактерий накапливаются полифосфаты; они содержатся в волютиновых гранулах и используются клетками как источник фосфора и энергии. В клетках серных бактерий откладывается молекулярная сера.

Подвижность бактерий . Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижные, так и неподвижные. Изогнутые и спиралевидные бактерии подвижны. Некоторые бактерии перемещаются путем скольжения. Движение большинства бактерий осуществляется с помощью жгутиков. Жгутики - это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10-20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие, число и расположение жгутиков - постоянные для вида признаки и имеют диагностическое значение. Бактерии с одним жгутиком на конце клетки получили название монотрихов; с пучком жгутиков - лофотрихов", с пучком жгутиков на обоих концах клетки - амфитрихов; бактерии, у которых жгутики находятся на всей поверхности клетки, называются перитрихами. Скорость передвижения бактерий велика: за секунду клетка со жгутиками может пройти расстояние в 20-50 раз больше, чем длина ее тела. При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть утрачена. Кроме жгутиков, на поверхности некоторых бактерий имеются в большом количестве нитевидные образования, значительно тоньше и короче, чем жгутики - фимбрии (или пили).

Размножение бактерий. Для прокариотных клеток характерно простое деление клетки надвое. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Палочковидные бактерии делятся попе­рек, шаровидные формы в разных плоскостях. В зависимости от ориентации плоскости деления и их числа возникают различные формы: одиночные кокки, парные, цепочки, в виде пакетов, гроздьев. Особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий, условий культивирования: некоторые виды делятся через каждые 15-20 мин, другие - через 5-10 ч. При таком делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока вследствие развития молочно-кислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т.д.

Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают в основном па­лочковидные бактерии. В каждой клетке образуется только одна спора (эндоспора).

Спорообразование - сложный процесс, в нем различают несколько стадий: сначала наблюдается перестройка генетического аппарата клетки, изменяются морфология нуклеоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, которая затем разделяется; часть ее концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. В спорогенной зоне происходит уплотнение цитоплазмы, затем этот участок обособляется от остального клеточного содержимого перегородкой (септой). Отсеченный участок покрывается мембраной материнской клетки, образуется так называемая проспора. Проспора - это структура, располагающаяся внутри материнской клетки, от которой она отделена двумя мембранами: наружной и внутренней. Между мембранами формируется кортикальный слой (кортекс), сходный по химическому составу с клеточной стенкой вегетативной клетки. Помимо пептидогликана, в кортексе содержится дипиколиновая кислота (С 7 Н 8 О 4 Мg), которая отсутствует в вегетативных клетках. В дальнейшем по­верх проспоры образуется оболочка споры, состоящая из нескольких слоев. Число, толщина и строение слоев различны у разных видов бактерий. Поверхность наружной оболочки может быть гладкой либо с выростами разной длины и формы. Поверх оболочки споры нередко образуется еще тонкий покров, окружающий спору в виде чехла, - экзоспориум.

Споры имеют обычно круглую или овальную форму. Диаметр спор некоторых бактерий превышает ширину клетки, вследствие чего форма спороносящих клеток, изменяется. Клетка приобретает форму веретена (клостридиум ) , если спора расположена в ее центре, или форму барабанной палочки (плектридиум) , когда спора приближена к концу клетки.

После созревания споры материнская клетка отмирает, оболочка ее разрушается, и спора освобождается. Процесс образования споры протекает в течение нескольких часов.

Наличие у бактериальных спор плотной, труднопроницаемой оболочки, малое содержание в ней воды, большое количество липидов, а также наличие кальция и дипиколиновой кислоты обусловливают высокую устойчивость спор к факторам внешней среды. Споры могут находиться в жизнеспособном состоянии сотни и даже тысячи лет. Например, жизнеспособные споры выделены из трупов мамонтов и египетских мумий, возраст которых исчисляется тысячелетиями. Споры устойчивы к высокой температуре: в сухом состоянии они погибают после прогревания при 165-170°С в течение 1,5-2 ч, а при перегретом паре (в автоклаве) -- при 121°С в течение 15-30 мин.

В благоприятных условиях спора прорастает в вегетативную клетку; этот процесс обычно длится несколько часов.

Прорастающая спора начинает активно поглощать воду, активизируются ее ферменты, усиливаются биохимические процессы, приводящие к росту. Кортекс при прорастании споры превращается в клеточную стенку молодой вегетативной клетки; освобождаются во внешнюю среду дипиколиновая кислота и кальций. Внешняя оболочка споры разрывается, через разрывы выходит наружу "росток" новой клетки, из которого затем формируется вегетативная бактериальная клетка.

Порчу пищевых продуктов вызывают лишь вегетативные клетки. Знание факторов, способствующих образованию спор у бактерий, и факторов, которые вызывают их прорастание в вегетативные клетки, имеет значение в выборе способа обработки продуктов с целью предотвращения их микробной порчи.

Изложенные выше сведения характеризуют в основном так называемые истинные бактерии. Существуют и другие, более или менее отличающиеся от них, к которым относятся следующие.

Нитчатые (нитевидные бактерии). Это многоклеточные организмы в виде нитей различной длины, диаметром от 1 до 7 мкм, подвижных или прикрепленных к субстрату. В основном нити со слизистым чехлом. Они могут содержать окись магния или окислы железа. Живут в водоемах, встречаются в почве.

Миксобактерии. Это палочковидные бактерии, передвигаются путем скольжения. Они образуют плодовые тела - скопления клеток, заключенных в слизь. Клетки в плодовых телах переходят в покоящееся состояние - миксоспоры. Эти бактерии живут в почве, на различных растительных остатках.

Почкующиеся и стебельковые бактерии размножаются почкованием, образуют стебельки или то и другое вместе. Есть виды с выростами - простеками. Живут в почве и водоемах.

Актиномицеты. Бактерии имеют ветвистую форму. Одни - палочки слегка разветвленные (см. рис. 2, д), другие - в виде тонких ветвящихся нитей, образующих одноклеточный мицелий. Мицелиальные актиномицеты, называ­емые "лучистые грибки", размножаются спорами, развивающимися на воздушных ветвях мицелия. Актиномицеты бывают окрашены; они широко распространены в природе. Встречаются и на пищевых продуктах и могут вызвать их порчу. Продукт приобретает характерный землистый запах. Многие актиномицеты продуцируют антибиотики. Есть виды, патогенные для человека и животных.

Микоплазмы. Организмы без клеточной стенки, покрыты лишь трехслойной мембраной. Клетки очень мелкие, иногда ультрамикроскопических размеров (около 200 нм), плеоморфные (разнообразной формы) - от кокковидных до нитевидных. Некоторые вызывают заболевания человека, животных, растений.

Основы систематики бактерий Современные системы классификации бактерий по существу являются искусственными, объединяют бактерии в определенные группы на основе сходства их по комплексу морфологических, физиологических, биохимических и генотипических признаков.В этих целях используется руководство Берги по определению бактерий (1974 год, 8-е издание и 1984 г.- 9-е издание). По 8-му изданию все прокариоты делят на два отдела - цианобактерии и бактерии. Первый отдел - цианобактерии (синезеленые водоросли) - это фототрофные микроорганизмы. Второй отдел - бактерии. Этот отдел разделен на 19 групп. К 17-ой группе относят актиномицеты. По 9-му изданию царство прокариот подразделено на четыре отдела в зависимости от наличия или отсутствия клеточной стенки и ее химического состава: в первый отдел - тонкокожие, включены группы бактерий, грамотрицательные, фототрофные и цианобактерии; во 2-ой отдел - твердокожие, включены группы бактерий, относящиеся к окраске по Граму положительно; в третий отдел включены микоплазмы- бактерии, не имеющие клеточной стенки; в четвертый отдел включены метанобразующие и архебактерии(особая группа бактерий, обитающая в экстремальных условиях внешней среды и являющиеся одной из древнейших форм жизни).

Бактерии относят к прокариотам, и долгое время из-за микроскопических размеров их морфология не была изучена на должном уровне.

Раздел микробиологии, изучающий морфологические формы бактерий, их строение, размеры, способы передвижения, размножение и спорообразование, называют морфологией. При изучении морфологических свойств необходимо учитывать то, что под влиянием различных факторов (питательная среда, температура, влажность) бактерии способны их менять.

Методы изучения бактерий

Для изучения морфологии бактерий применяют такие методы, как микроскопия и окрашивание. Наблюдение за живыми бактериями происходит с помощью световых и электронных микроскопов в неокрашенных препаратах. Для получения полной характеристики рассматриваемых бактерий применяют такие методы изучения:

  • Морфологический. Под микроскопом рассматривают морфологию бактерии, ее подвижность, споры и способы размножения.
  • Культуральный. Исследование бактерии в питательных средах. Изучают ее рост, величину, цвет колонии и скорость размножения.
  • Физиологический. Рассматривают такие свойства бактерий, как реакция на температуру, на внешние раздражители, на кислород, их способность к сбраживанию, реагирование на различные среды.

Применение этих способов изучения позволяет установить вид микроорганизма и морфологию каждого из них. Это сложный и длительный процесс, занимающий много времени.

Способ окрашивания является наиболее точным и эффективным в распознании и изучении строения бактерий под микроскопом. Зачастую микробы в своей естественной среде невидны под микроскопом, а окрашивание позволяет не только изучить морфологию бактерии, а и правильно определить ее вид. Многие бактерии имеют одинаковую морфологию, но при окрашивании дают разные цвета. Для изучения бактерий применяют такие способы окрашивания:

  • Простой. Применяют одну краску: фуксин либо метиленовую синюю.
  • Сложный. Этот способ чаще всего применяется для выявления возбудителя инфекции, включает в себя два и более красителя. Чаще на практике применяют метод окрашивания по Граму и по Цилю.
  • Дифференцированный. Для окрашивания жгутиков используют метод Бениньетти. Для индицирования капсул применяют метод Гинса.

Классификация микроорганизмов

Многообразие форм, биохимическая нестабильность и простота в строении усложняют классификацию бактерий. До сих пор их классификация является предметом споров среди микробиологов. В основу классифицирования положены такие направления в изучении микроорганизмов:

  • их морфология;
  • типы питания;
  • источник энергии;
  • реакция на окрашивание;
  • разновидности форм.

Формы бактерий

При всем многообразии бактерий выделяют три основных формы: сферические, палочковидные и извитые.

Сферическая

Сферической формой обладают кокки. По тому, как располагаются клетки, разделяют на такие группы:

  • микрококки (маленькие) – каждая клетка отдельно;
  • диплококки (два) после деления клетки существуют парами;
  • стрептококки (цепочка) после деления образуют цепочку;
  • сарцины (связка) после деления образуют связку в трех направлениях;
  • стафилококки (гроздь) делятся во всех направлениях, образуя гроздь.

Палочковидные

Палочковидные делят на группы в зависимости от формы (правильная или неправильная), от размеров и по тому, как располагаются клетки. Расположение клеток под микроскопом выглядит хаотично, потому что после деления каждая клетка живет отдельно.

Их делят на такие группы:

Извитые

Виды, имеющие извитую форму, разделяют по количеству оборотов и по характеру витков. Вибрионы имеют слегка изогнутый вид, спириллы – несколько завитков правильной формы, спирохеты – большое количество мелких завитков.

Строение клетки бактерий

Ультраструктура клетки изучается при помощи таких микроскопических методов:

  • светового;
  • люминесцентного;
  • сухого (когда между объективом и линзой есть воздух);
  • фазово-контрастного;
  • темнопольного.
  • интерференционного;
  • электронного.

Ультраструктура бактериальной клетки считается показателем ее уникальности в организационных процессах.

Различают постоянные органоиды: аналог ядра, цитоплазматическая мембрана, цитоплазма, которые свойственны каждому виду. Имеются и временные включения: капсула, пили, клеточная стенка, споры, жгутики, имеющиеся не у всех микробов или возникающие при различных воздействиях.

Нуклеоид

Нуклеоид является прототипом ядра и не содержит таких структур, свойственных эукариотам, как ядрышки, ядерная оболочка и гистоны. Он обладает свойством хранения и передачи генной информации, содержащейся в одной хромосоме, имеющей вид замкнутого кольца. Еще носителями наследственной информации бактериальной клетки являются плазмиды.

Цитоплазма

Цитоплазм представляет собой сложную систему, включающую в себя такие включения:

  • рибосомы (отвечают за синтез белков);
  • гранулы (содержат гликоген, полисахариды);
  • волютин (полифосфаты);
  • плазмиды (обладают свойством повышать устойчивость клетки).

Цитоплазматическая мембрана

Под электронным микроскопом хорошо видно, что мембрана бактериальной клетки состоит из трех слоев. При росте клетки она имеет свойство образовывать своеобразные выпячивания ─ мезосомы. В жизни клетки она выполняет такие функции:

  • барьерную;
  • энергетическую;
  • транспортную.

Капсула

Капсула является слизистой структурой с четко выраженными границами, хорошо различаемыми под микроскопом. Ее изучают с помощью окрашивания мазка, где краска вокруг нее создает темный фон. Она обладает защитными свойствами против фагоцитоза бактерий и реагирует на антитела.

Клеточная стенка

Клеточная стенка защищает бактериальную клетку и обеспечивает ее постоянную форму. Состоит из двух слоев: внешнего, обладающего свойством пластичности, и внутреннего, постоянного. Такое свойство клеточной стенки, как ее реакция на окрашивание, используется для определения видов.

Жгутики

Жгутики ─ это тонкие нити, обеспечивающие подвижность клетки микроорганизма и имеющие длину большую, чем она сама. Жгутики имеют белковую структуру, их число может колебаться от одного до тысяч. Морфология расположения у них разнообразна: от прикрепления к одному концу до прикрепления по всей поверхности.

Пили

Пили являются ворсинками, которые состоят из белкового вещества. Они выполняют такие функции:

  • прикрепление к поражаемой клетке;
  • несут ответственность за питание;
  • размножение;
  • водно-солевой обмен;
  • конъюгация (сближение).

Споры

При неблагоприятных условиях роста и развития микробы образуют споры, способствующие сохранению вида и не являющиеся продолжением рода. Наличие многослойной оболочки и вялотекущих метаболических процессов позволяет спорам долгое время находиться в стадии спокойствия и ждать подходящих условий для развития.

Появление современных методов исследования привело к новому витку в изучении царства бактерий. Ежегодно микробиологи с помощью новых методик изучают морфологию и свойства новых, еще неизученных видов микроорганизмов, неподходящих ни под один тип классификации.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: