Что есть в клетках бактерий. Строение бактериальной клетки добавить свою цену в базу комментарий. Строение бактериальной клетки, оболочка

Форма. Различают несколько основных форм бактерий - кокковидные, палочковидные, извитые и ветвящиеся (рис.).

Шаровидные (кокковые) микробы по форме напоминают шар, но бывают овальные, плоские, односторонне вогнутые или слегка вытянутые. Шаровидные формы образуются в результате деления клеток в одной, двух, трех взаимно перпендикулярных или разных плоскостях. При делении клеток в одной плоскости клетки могут располагаться попарно, в связи с чем такие формы получили название диплококков. Если деление происходит последовательно в одной плоскости и клетки соединены в виде цепочки - это стрептококки (2). Деление кокка в двух взаимно перпендикулярных плоскостях ведет к образованию четырех клеток, или тетракокка. Пакетообразные кокки, или сарцины (3), - результат деления кокков в трех взаимно перпендикулярных плоскостях.

Палочковидные, или цилиндрические, формы принято делить на бактерии и бациллы (рисунок 3). Бактерии - па­лочковидные формы, не образующие спор (пишут Bact., например Bact. aceti). Бациллы - палочковидные формы, образующие споры (пишут Вас., например Вас. subtilis). Бактерии и бациллы бывают разными по форме и размерам. Концы палочек чаще закруглены, но могут быть срезаны под прямым углом (возбудитель сибирской язвы), иногда сужены.


Рисунок - Основные формы бактерий:

1- стафилококки; 2 - стрептококки; 3 - сарцины; 4 - гонококки; 5 - пневмококки; 6 - капсула пневмококков; 7 - коринебактерии дифтерии; 8 - клостридии; 9 – бациллы; 10 - вибрионы; 11 - спириллы; 12 - трепонемы; 13 - бореллии; 14 - лептоспиры; 15 - актиномицеты; 16 - расположение жгутиков: а - монотрих; б - лофотрих; в - амфитрих, г – перитрих

Среди палочковидных форм, образующих споры (бациллы), различают бациллы (9 ) и клостридии (8 ). Бациллы, за исключением Вас. anthracis , подвижны. Бациллы - аэробы. У бацилл споры не превышают толщины вегетативной клетки. Клостридии - анаэробы. Споры толще вегетативной клетки. Такие формы напоминают веретено, ракетку, лимон, барабанную палочку. Клостридии принимают участие во многих процессах в природе. Являются возбудителями анаэробных инфекций. Вызывают аммонификацию белковых ве­ществ, мочевины. Разлагают фосфорорганические соединения. Фиксируют молекулярный азот и др.

Палочки, как и кокки, могут располагаться попарно или цепочкой. При соединении бактерий попарно образуются дипло-бактерии, при таком же соединении бацилл - диплобациллы. Со­ответственно образуются стрептобактерии и стрептобациллы, если клетки располагаются цепочкой. Тетрад и пакетов палочко­видные формы не образуют, так как они делятся в одной плоско­сти, перпендикулярной продольной оси.

Извитые формы микробов определяют не только по длине и диаметру, но и по количеству завитков. Вибрионы(10) напоминают по форме запятую. Спириллы (11) - извитые формы, образующие до 5 завитков. Спирохеты - тонкие длинные извитые формы с множеством завитков. Они занимают промежуточное положение между бактериями и простейшими. Микобактерии - палочки с боковыми выростами (возбудители туберкулеза, паратуберкулеза). Коринебактерии напоминают микобактерии, но отличаются от них образующимися на концах утолщениями и включениями зерен в цитоплазме (дифтерийная палочка). Нитчатые бактерии - многоклеточные организмы, имеющие форму нити. Миксобактерии - скользящие микробы, по форме напоминающие палочки или веретено. Простекобактерии могут быть треугольной или иной формы. У некоторых из них лучевая симметрия. Свое название такие организмы получили по наличию остроконечных выростов - простек. Размножаются они делением, или почкованием.

Размеры. Размеры микроорганизмов определяются в микрометрах (мкм) (10 -6 м по системе СИ). Диаметр шаровидных форм 0,7-1,2 мкм; длина палочковидных 1,6-10 мкм, ширина 0,3-1 мкм. Вирусы - еще более мелкие существа. Их размеры определяются в нанометрах (1 нм = 10 -9 м). Нитчатые формы микробов достигают длины в несколько десятков микрометров. Для того чтобы представить размеры этих существ, достаточно сказать, что в одной капле воды может вмещаться несколько миллионов или миллиардов микроорганизмов.

Строение. Бактериальная клетка состоит из оболочки, наружный слой которой называется клеточная стенка, а внутренний - цитоплазматическая мембрана, а также цитоплазмы с включениями и нуклеоида. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили, плазмиды; некоторые бактерии в неблагоприятных условиях способны обра­зовывать споры.

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она защищает клетку от дейст­вии вредных факторов внешней среды, участвует в процессе ее деления и транспорте метаболитов.

Наиболее толстая клеточная стенка у грамположительных бактерий (до 50-60 нм); у грамотрицательных бактерий она составляет 15-20 нм.

В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки грамположительных бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% ее массы. У грамотрицательных бактерий количество пептидогликана в клеточной стенке - 5- 20%.

Цитоплазматическая мембрана прилегает к внутренней поверхности клеточной стенки бактерий и окружает наружную часть цитоплазмы. Она состоит из двойного слоя липидов, а также интегральных белков, пронизывающих ее насквозь. Цитоплазматическая мембрана участвует в регуляции осмотическогодавления, транспорте веществ и энергетическом метаболизмеклетки.

Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, жирных кислот и полифосфатов (волютин).

Местами цитоплазма пронизана мембранными структурами - мезосомами , кото­рые произошли от цитоплазматической мембраны и сохранили с ней связь. Мезосомы выполняют различные функции, в них и в связанной с ними цитоплазматической мембране располо­жены ферменты, участвующие в энергетических процессах - в снабжении клетки энергией.

Рибосомы рассеяны в цитоплазме в виде мелких гра­нул размером 20-30 нм; рибосомы состоят примерно наполо­вину из РНК и белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке их может быть 5-50 тыс.

Нуклеоид - эквивалент ядра у бактерий. Он расположен в цитоплазмебактерий в виде двухнитчатой ДНК, замкнутой в кольцо и плотноуложенной наподобие клубка. В отличие от ядра эукариот нуклеоид бактерий не имеет ядерной оболочки, ядрышка и основ­ных белков (гистонов). Обычно в бактериальной клетке содер­жится одна хромосома, представленная замкнутой в кольцо мо­лекулой ДНК.

Кроме нуклеоида в бактериальной клетке могут находиться внехромосомные факторы наследственности - плазмиды , пред­ставляющие собой ковалентно замкнутые кольца ДНК и способ­ные к репликации независимо от бактериальной хромосомы.

Капсула - слизистая структура, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние грани­цы. Обычно капсула состоит из полисахаридов, иногда из поли­пептидов, например, у сибиреязвенной бациллы. Капсула препят­ствует фагоцитозу бактерий. Капсулы присущи некоторым видам бактерий или могут образовываться при попадании микроба в макроорганизм.

Жгутики бактерий определяют подвижность клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, они прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками, имеют большую длину, чем сама клетка. Они состоят из белка - флагеллина, закрученного в виде спирали.

Ворсинки, или пили (фимбрии) , - нитевидные образования, более тонкие и короткие, чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Они ответст­венны за прикрепление бактерий к поражаемой клетке, за пита­ние, водно-солевой обмен; половые пили (F-пили) характерны для так называемых «мужских» клеток-доноров.

Споры - своеобразная форма покоящихся грамположительных бактерий, образующихся во внешней среде при неблагопри­ятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Процесс спорообразования про­ходит несколько стадий, в течение которых часть цитоплазмы и хромосома отделяются, окружаются цитоплазматической мембра­ной; образуется проспора, затем формируется многослойная, плохо проницаемая оболочка, придающая споре устойчивость к темпера­туре и другим неблагоприятным факторам. При этом внутри одной бактерии образуется одна спора. Спорообразование спо­собствует сохранению вида и не является способом размножения, как у грибов. Споры бактерий могут долго сохраняться в почве (возбудители сибирской язвы и столбняка - десятки лет). В благоприятных условиях споры прорастают, при этом из одной споры образуется одна бактерия.

Подвижность. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвиж­ными, так и неподвижными. Изогнутые и спиралевидные бакте­рии подвижны. Движение бактерий осуществляется с помощью жгутиков. Жгутики могут осуществлять вращательные движения. Наличие жгутиков, их расположение являются постоянным для вида признаком и имеют диагностическое значение. Скорость передвижения велика: за секунду клетка со жгутиками может пройти расстояние в 20-50 раз больше, чем длина ее тела.

Жгутики располагаются на поверхности тела бактерий по одиночке - монотрихиальное жгутикование , пуч­ком на одном конце клетки - лофотрихиальное , пуч­ком на обеих концах клетки - амфитрихиальное ; они могут находиться на всей поверх­ности клетки - перитрихиальное жгутикование . При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть ут­рачена.


Похожая информация.


Бактерии («палочка» с древнегреческого) представляют собой царство (группу) безъядерных (прокариотных) микроорганизмов, одноклеточных, как правило. Сегодня известно и описано порядка десяти тысяч их видов. Ученые предполагают, что существует их более миллиона.

Может иметь круглую, извитую, палочковидную форму. В редких случаях встречаются кубические, тетраэдрические, звездчатые, а также О- или С-образные формы. определяет способности, которыми обладает бактериальная клетка. Например, в зависимости от формы, микроорганизмы обладают той или иной степенью подвижности, способности прикрепляться к поверхности, тем или иным способом поглощения питательных соединений.

Бактериальная клетка включает в себя три обязательные структуры: мембрану цитоплазматическую, рибосомы и нуклеоид.

От мембраны с внешней стороны располагается несколько слоев. В частности, там находится слизистый чехол, капсула, клеточная стенка. Кроме того, с внешней стороны развиваются разные поверхностные структуры: ворсинки, жгутики. Цитоплазма и мембрана объединены в понятие «протопласт».

Бактериальная клетка со всем своим содержимым ограничена от внешней среды при помощи мембраны. Внутри, в гомогенной фракции цитоплазмы, располагаются белки, растворимые РНК, субстраты обменных реакций, различные соединения. В остальной части содержатся разные структурные элементы.

Не содержит ядерных мембран и любых других внутрицитоплазматических оболочек, которые не являются производными цитоплазматической мембраны. Вместе с тем для некоторых прокариот характерны локальные «выпячивания» основной оболочки. Эти «выпячивания» - мезосомы - выполняют различные функции и разделяют бактериальную клетку на функционально разные части.

Все данные, необходимые для жизнедеятельности, содержатся в одной ДНК. Хромосома, которую включает бактериальная клетка, как правило, обладает формой кольца, ковалентно-замкнутого. В одной точке ДНК прикрепляется к мембране и помещена в обособленную, однако не отделенную от цитоплазмы, структуру. Эта структура имеет название «нуклеоид». В развернутом виде бактериальная хромосома имеет длину больше миллиметра. Она, как правило, представлена в одном экземпляре. Другими словами, прокариоты практически все гаплоидны. Однако в определенных специфических условиях бактериальная клетка может содержать копии своей хромосомы.

Особое значение в жизнедеятельности бактерии имеет Вместе с этим данный структурный элемент не является обязательным. В лабораторных условиях были получены некоторые формы прокариот, у которых стенка отсутствовала полностью либо частично. Эти бактерии могли существовать в обычных условиях, однако в некоторых случаях утрачивали способность к делению. В природе существует группа прокариот, которые не содержат в своей структуре стенки.

На внешней поверхности от стенки может располагаться аморфный слой - капсула. Слизистые слои отделяются от микроорганизма достаточно легко, они не имеют связи с клеткой. Чехлы также имеют тонкую структуру, они не аморфны.

Размножение бактерий некоторых форм осуществляется посредством равновеликого, бинарного поперечного деления либо почкования. У разных групп наблюдаются разные варианты деления. Так, например, у цианобактерий размножение происходит множественным способом - несколькими последовательными бинарными делениями. В результате образуется от четырех до тысячи новых микроорганизмов. У них существуют особые механизмы, посредством которых обеспечивается пластичность генотипа, необходимая для приспособления к изменчивой внешней среде и эволюции.

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Структурными компонентами клетки являются оболочка бактерий, состоящая из клеточной стенки, цитоплазматической мембраны и иногда капсулы; цитоплазма; рибосомы; различные цитоплазматические включения; нуклеоид (ядро). Некоторые виды бактерий имеют, кроме того, споры, жгутики, реснички (пили, фимбрии) (рис. 2).

Клеточная стенка обязательное образование бактерий большинства видов. Ее строение зависит от вида и принадлежности
бактерий к группам, дифференцируемым при окраске по методу Грама. Масса клеточной стенки составляет около 20 % сухой массы всей клетки, толщина – от 15 до 80 нм.

Рис. 3. Схема строения бактериальной клетки

1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - нуклеоид; 8 - внутрицитоплазматические мембранные образования; 9 - жировые кап­ли; 10 - полисахаридные гранулы; 11 - гранулы по­лифосфата; 12 -- включения серы; 13 - жгутики; 14 - базальное тельце

Клеточная стенка имеет поры диаметром до 1 нм, поэтому она – полупроницаемая мембрана, через которую проникают питательные вещества и выделяются продукты обмена.

Эти вещества могут проникать внутрь микробной клетки лишь после предварительного гидролитического расщепления специфическими ферментами, выделяемыми бактериями во внешнюю среду.

Химический состав клеточной стенки неоднороден, но он является постоянным для определенного вида бактерий, что используется при идентификации. В составе клеточной стенки обнаружены азотистые соединения, липиды, целлюлоза, полисахариды, пектиновые вещества.

Наиболее важным химическим компонентом клеточной стенки является сложный полисахаридпептид. Его еще называют пептидогликан, гликопептид, муреин (от лат. murus – стенка).

Муреин представляет собой структурный полимер, состоящий из молекул гликана, образованных ацетилглюкозамином и ацетилмурамовой кислотой. Синтез его осуществляется в цитоплазме на уровне цитоплазматической мембраны.

Пептидогликан клеточной стенки различных видов имеет специфический аминокислотный состав и в зависимости от этого определенный хемотип, что учитывают при идентификации молочнокислых и других бактерий.

В клеточной стенке грамотрицательных бактерий пептидогликан представлен одним слоем, тогда как в стенке грамположительных бактерий он формирует несколько слоев.

В 1884 г. Gram предложил метод окраски ткани, который использовали для окрашивания клеток прокариот. Если при окраске по Граму фиксированные клетки обработать спиртовым раствором краски кристаллического фиолетового, а затем раствором йода, то эти вещества образуют с муреином устойчивый окрашенный комплекс.

У гоамположительных микроорганизмов окрашенный фиолетовый комплекс под воздействием этанола не растворяется и соответственно не обесцвечивается, при докрашивании фуксином (краска красного цвета) клетки остаются окрашенными в темно-фиолетовый цвет.

У грамотрицательных видов микроорганизмов генцианвиолет растворяется этанолом и вымывается водой, а при докрашивании фуксином клетка окрашивается в красный цвет.

Способность микроорганизмов окрашиваться аналиновыми красителями и по методу Грама называют тинкториальными свойствами . Их необходимо изучать в молодых (18-24 часовых) культурах, так как некоторые грамположительные бактерии в старых культурах теряют способность положительно окрашиваться по методу Грама.

Значение пептидогликана заключается в том, что благодаря ему клеточная стенка обладает ригидностью, т.е. упругостью, и является защитным каркасом бактериальной клетки.

При разрушении пептидогликана, например, под действием лизоцима клеточная стенка теряет ригидность и разрушается. Содержимое клетки (цитоплазма) вместе с цитоплазматической мембраной приобретает сферическую форму, т. е. становится протопластом (сферопластом).

С клеточной стенкой связаны многие как синтезирующие, так и разрушающие ферменты. Компоненты клеточной стенки синтезируются в цитоплазматической мембране, а затем транспортируются в клеточную стенку.

Цитоплазматическая мембрана располагается под клеточной стенкой и плотно прилегает к ее внутренней поверхности. Она представляет собой полупроницаемую оболочку, окружающую цитоплазму и внутреннее содержимое клетки -протопласт. Цитоплазматическая мембрана – это уплотненный наружный слой цитоплазмы.

Цитоплазматическая мембрана является главным барьером между цитоплазмой и окружающей средой, нарушение ее целостности приводит к гибели клетки. В ее состав входят белки (50-75 %), липиды (15-45 %), у многих видов – углеводы (1-19 %).

Главным липидным компонентом мембраны являются фосфо- и гликолипиды.

Цитоплазматическая мембрана при помощи локализованных в ней ферментов осуществляет разнообразные функции: синтезирует мембранные липиды – компоненты клеточной стенки; мембранные ферменты – избирательно переносят через мембрану различные органические и неорганические молекулы и ионы, мембрана участвует в превращениях клеточной энергии, а также в репликации хромосом, в переносе электрохимической энергии и электронов.

Таким образом, цитоплазматическая мембрана обеспечивает избирательное поступление в клетку и удаление из нее разнообразных веществ и ионов.

Производными цитоплазматической мембраны являются мезосомы . Это сферические структуры, образуемые при закручивании мембраны в завиток. Они располагаются с двух сторон – в месте образования клеточной перегородки или рядом с зоной локализации ядерной ДНК.

Мезосомы функционально эквивалентны митохондриям клеток высших организмов. Они участвуют в окислительно-восстановительных реакциях бактерий, играют важную роль в синтезе органических веществ, в формировании клеточной стенки.

Капсула является производным наружного слоя клеточной сгонки и представляет собой слизистую оболочку, окружающую одну или несколько микробных клеток. Толщина ее может достигать 10 мкм, что во много раз превышает толщину самой бактерии.

Капсула выполняет защитную функцию. Химический состав капсулы бактерий различен. В большинстве случаев она состоит из сложных полисахаридов, мукополисахаридов, иногда полипептидов.

Капсулообразование, как правило, является видовым признаком. Однако появление микрокапсулы часто зависит от условий культивирования бактерий.

Цитоплазма – сложная коллоидная система с содержанием большого количества воды (80-85 %), в которой диспергированы белки, углеводы, липиды, а также минеральные соединения и другие вещества.

Цитоплазма представляет собой содержимое клетки, окруженное цитоплазматической мембраной. Ее подразделяют на две функциональные части.

Одна часть цитоплазмы находится в состоянии золя (раствора), имеет гомогенную структуру и содержит набор растворимых рибонуклеиновых кислот, белков-ферментов и продуктов метаболизма.

Другая часть представлена рибосомами, включениями различной химической природы, генетическим аппаратом, другими внутрицитоплазма-тическими структурами.

Рибосомы – это субмикроскопические гранулы, представляющие собой нуклеопротеиновые частицы сферической формы диаметром от 10 до 20 нм, молекулярной массой около 2-4 млн.

Рибосомы прокариот состоят из 60 % РНК (рибонуклеиновой кислоты), располагающейся в центре, и 40 % белка, покрывающего нуклеиновую кислоту снаружи.

Включения цитоплазмы представляют собой продукты обмена, а также резервные продукты, за счет которых клетка живет в условиях недостатка питательных веществ.

Генетический материал прокариот состоит из двойной нити дезоксирибонуклеиновой кислоты (ДНК) компактной структуры, расположенной в центральной части цитоплазмы и не отделенной от нее мембраной. ДНК бактерий по строению не отличается от ДНК эукариот, но так как она не отделена от цитоплазмы мембраной, генетический материал называют нуклеоидом или генофором . Ядерные структуры имеют сферическую или подковообразную форму.

Споры бактерий являются покоящейся, не размножающейся их формой. Они формируются внутри клетки, представляют собой образования круглой или овальной формы. Споры образуют преимущественно грамположительные бактерии, палочковидной формы с аэробным и анаэробным типом дыхания в старых культурах, а также в неблагоприятных условиях внешней среды (недостаток питательных веществ и влаги, накопление продуктов обмена в среде, изменение рН и температуры культивирования, наличие или отсутствие кислорода воздуха и др.) могут переключаться на альтернативную программу развития, в результате чего образуются споры. При этом в клетке образуется одна спора. Это свидетельствует о том, что спорообразование у бактерий является приспособлением для сохранения вида (индивидуума) и не является способом их размножения. Процесс спорообразования происходит, как правило, во внешней среде в течение 18-24 ч.

Зрелая спора составляет примерно 0,1 объема материнской клетки. Споры у разных бактерий различаются по форме, размеру, расположению в клетке.

Микроорганизмы, у которых диаметр споры не превышает ширины вегетативной клетки, называют бациллами , бактерии, имеющие споры, диаметр которых больше поперечника клетки в 1,5-2 раза, называют клостридиями .

Внутри микробной клетки спора может располагаться в середине – центральное положение, на конце – терминальное и между центром и концом клетки – субтерминальное расположение.

Жгутики бактерий являются локомоторными органами (органами движения), при помощи которых бактерии могут передвигаться со скоростью до 50-60 мкм/с. При этом за 1 с бактерии перекрывают длину своего тела в 50-100 раз. Длина жгутиков превышает длину бактерий в 5-6 раз. Толщина жгутиков составляет в среднем 12-30 нм.

Число жгутиков, их размеры и расположение постоянны для определенных видов прокариот и поэтому учитываются при их идентификации.

В зависимости от количества и местонахождения жгутиков бактерии подразделяют на монотрихи (монополярные монотрихи) – клетки с одним жгутиком на одном из концов, лофотрихи (монополярные политрихи) – пучок жгутиков располагается на одном из концов, амфитрихи (биполярные политрихи) – жгутики располагаются на каждом из полюсов, перитрихи – жгутики расположены по всей поверхности клетки (рис. 4) и атрихи – бактерии, лишенные жгутиков.

Характер движения бактерий зависит от числа жгутиков, возраста, особенностей культуры, температуры, наличия различных химических веществ и других факторов. Наибольшей подвижностью обладают монотрихи.

Жгутики чаще имеются у палочковидных бактерий, они не являются жизненно необходимыми структурами клетки, так как существуют безжгутиковые варианты подвижных видов бактерий.

Обязательные и необязательные структурные компоненты бактериальной клетки, их функции. Различие в строение клеточной стенки грамположительных и грамм отрицательных бактерий. L-формы и некультивируемые формы бактерий

Бактерии являются прокариотами и существенно отличаются от клеток растений и животных (эукариотов). Они относятся к одноклеточным организмам и состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы, нуклеоида (обязательных компонентов бактериальной клетки). Некоторые бактерии могут иметь жгутики, капсулы, споры (необязательные компоненты бактериальной клетки).

У прокариотической клетки структуры, расположенные снаружи от цитоплазматической мембраны, называют поверхностными (клеточная стенка, капсула, жгутики, ворсинки).

Клеточная стенка - важный структурный элемент бактериальной клетки, располагающийся между цитоплазматической мембраной и капсулой; у бескапсульных бактерий - это внешняя оболочка клетки. Выполняет ряд функций: защищает бактерии от осмотического шока и других повреждающих факторов, определяет их форму, участвует в метаболизме; у многих видов патогенных бактерий токсична, содержит поверхностные антигены, а также несет на поверхности специфические рецепторы для фагов. В клеточной стенке бактерий имеются поры, которые участвуют в транспорте экзотоксинов и других экзобелков бактерий.

Основным компонентом клеточной стенки бактерий является пептидогликан, или муреин (лат. murus - стенка), - опорный полимер, имеющий сетчатую структуру и образующий ригидный (жесткий) наружный каркас бактериальной клетки. Пептидогликан имеет основную цепь (остов), состоящую из чередующихся остатков N-ацстил-М-глюкозамина и N-ацетилмурамовой кислоты, соединенных 1,4-гликозидными связями, идентичные тетрапептидные боковые цепочки, прикрепляющиеся к молекулам N-ацстилмурамовой кислоты, и короткие поперечные пептидные мостики, связывающие полисахаридные цепи.

По тинкториальным свойствам все бактерии подразделяются на две группы: грамположительные и грамотрицателъные. Грамположительные бактерии прочно фиксируют комплекс генцианвиолета и йода, не подвергаются обесцвечиванию этанолом и поэтому не воспринимают дополнительный краситель фуксин, оставаясь окрашенными в фиолетовый цвет. У грамотрицательных бактерий этот комплекс легко вымывается из клетки этанолом, и они при дополнительном нанесении фуксина окрашиваются в красный цвет. У некоторых бактерий положительная окраска по Граму наблюдается только в стадии активного роста. Способность прокариот окрашиваться по методу Грама или обесцвечиваться этанолом определяется спецификой химического состава и ультраструктуры их клеточной стенки. бактериальный хламидиоз трахома

L-Формы бактерий - это фенотипические модификации, или мутанты, бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. Таким образом, L-формы - бактерии, дефектные по клеточной стенке. Образуются при воздействии L-трансформирующих агентов - антибиотиков (пенициллина, полимиксина, бацитрацина, венкомицина, стрептомицина), аминокислот (глицина, метионина, лейцина и др.), фермента лизоцима, ультрафиолетовых и рентгеновых лучей. В отличие от протопластов и сферопластов L-формы обладают относительно высокой жизнеспособностью и выраженной способностью к репродукции. По морфологическим и культуральным свойствам они резко отличаются от исходных бактерий, что обусловлено утратой клеточной стенки и изменением метаболической активности. Клетки L-форм имеют хорошо развитую систему внутрицитоплазматических мембран и миелиноподобные структуры. Вследствие дефекта клеточной стенки осмотически неустойчивы и их можно культивировать только на специальных средах с высоким осмотическим давлением; они проходят через бактериальные фильтры. Различают стабильные и нестабильные L-формы бактерий. Первые полностью лишены ригидной клеточной стенки; они крайне редко реверсируют в исходные бактериальные формы. Вторые могут обладать элементами клеточной стенки, в чем они проявляют сходство со сферопластами; в отсутствие фактора, вызвавшего их образование, реверсируют в исходные клетки.

Процесс образования L-форм получил название L-трансформации или L-индукции. Способностью к L-трансформации обладают практически все виды бактерий, в том числе и патогенные (возбудители бруцеллеза, туберкулеза, листерии и др.).

L-Формам придается большое значение в развитии хронических рецидивирующих инфекций, носительстве возбудителей, длительной персистенции их в организме. Инфекционный процесс, вызванный L-формами бактерий, характеризуется атипичностью, длительностью течения, тяжестью заболевания, трудно поддается химиотерапии.

Капсула - слизистый слой, расположенный над клеточной стенкой бактерии. Вещество капсулы четко отграничено от окружающей среды. Капсула не является обязательной структурой бактериальной клетки: потеря ее не приводит к гибели бактерии.

Вещество капсул состоит из высокогидрофильных мицелл, химический же состав их весьма разнообразен. Основные компоненты большинства капсул прокариот - гомо- или гетсрополисахариды (энтсробактерии и др.). У некоторых видов бацилл капсулы построены из полипептида.

Капсулы обеспечивают выживание бактерий, защищая их от механических повреждений, высыхания, заражения фагами, токсических веществ, а у патогенных форм - от действия защитных сил макроорганизма: инкапсулированные клетки плохо фагоцитируются. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

Жгутики - органоиды движения бактерий, представленные тонкими, длинными, нитевидными структурами белковой природы.

Жгутик состоит из трех частей: спиральной нити, крюка и базального тельца. Крюк - изогнутый белковый цилиндр, выполняющий функцию гибкого связывающего звена между базальным тельцем и жесткой нитью жгутика. Базальное тельце - сложная структура, состоящая из центрального стержня (оси) и колец.

Жгутики не являются жизненно важными структурами бактериальной клетки: существуют фазовые вариации бактерий, когда в одной фазе развития клетки они имеются, у другой - отсутствуют.

Количество жгутиков и места их локализации у бактерий разных видов неодинаковы, но стабильны для одного вида. В зависимости от этого выделяют следующие группы жгутиковых бактерий: моиотрихи - бактерии с одним полярно расположенным жгутиком; амфитрихи - бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах; лофотрихи - бактерии, имеющие пучок жгутиков на одном конце клетки; перитрихи - бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности. Бактерии, не имеющие жгутиков, называют атрихиями.

Будучи органами движения, жгутики типичны для плавающих палочковидных и извитых форм бактерий и лишь в единичных случаях встречаются у кокков. Они обеспечивают эффективное движение в жидкой среде и более медленное перемещение по поверхности твердых субстратов.

Пили (фимбрии, ворсинки) - прямые, тонкие, полые белковые цилиндры, отходящие от поверхности бактериальной клетки. Образованы специфическим белком - пилином, берут начало от цитоплазматической мембраны, встречаются у подвижных и неподвижных форм бактерий и видимы только в электронном микроскопе. На поверхности клетки может быть от 1--2, 50--400 и более пилей до нескольких тысяч.

Существует два класса пилей: половые (секспили) и пили общего типа, которые чаще называют фимбриями. У одной и той же бактерии могут быть пили разной природы. Половые пили возникают на поверхности бактерий в процессе конъюгации и выполняют функцию органелл, через которые происходит передача генетического материала (ДНК) от донора к реципиенту.

Пили принимают участие в слипании бактерий в агломераты, прикреплении микробов к различным субстратам, в том числе к клеткам (адгезивная функция), в транспорте метаболитов, а также способствуют образованию пленок на поверхности жидких сред; вызывают агглютинацию эритроцитов.

Цитоплазматическая мембрана (плазмолемма) - полупроницаемая липопротеидная структура бактериальных клеток, отделяющая цитоплазму от клеточной стенки. Она является обязательным полифункциональным компонентом клетки. Разрушение цитоплазматической мембраны приводит к гибели бактериальной клетки.

Цитоплазматическая мембрана в химическом отношении - белково-липидный комплекс, состоящий из белков и липидов. Основная часть мембранных липидов представлена фосфолипидами. Она построена из двух мономолекулярных белковых слоев, между которыми расположен липидный слой, состоящий из двух рядов правильно ориентированных молекул липидов.

Цитоплазматичсская мембрана служит осмотическим барьером клетки, контролирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу, в ней содержатся субстратспецифические ферменты-пермеазы, осуществляющие активный избирательный перенос органических и неорганических молекул.

В процессе роста клетки цитоплазмзтическая мембрана образует многочисленные инвагинаты, формирующие внутрицитоплазматические структуры мембраны. Локальные инвагинаты мембраны получили название мезосом. Эти структуры хорошо выражены у грамположительных бактерий, хуже - у грамотрицательных и плохо - у риккетсий и микоплазм.

Мезосомы, как и цитоплазматическая мембрана, являются центрами дыхательной активности бактерий, поэтому их иногда называют аналогами митохондрий. Однако значение мезосом окончательно еще не выяснено. Они увеличивают рабочую поверхность мембран, возможно, выполняют только структурную функцию, производя разделение бактериальной клетки на относительно обособленные отсеки, что создает более благоприятные условия для протекания ферментативных процессов. У патогенных бактерий обеспечивают транспорт белковых молекул экзотоксинов.

Цитоплазма - содержимое бактериальной клетки, отграниченное цитоплазматической мембраной. Состоит из цитозоля - гомогенной фракции, включающей растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма, и структурных элементов - рибосом, внутрицитоплазматических мембран, включений и нуклеоида.

Рибосомы - органоиды, осуществляющие биосинтез белка. Состоят из белка и РНК, соединенных в комплекс водородными и гидрофобными связями.

В цитоплазме бактерий выявляются различного типа включения. Они могут быть твердыми, жидкими и газообразными, с белковой мембраной или без нее и присутствовать непостоянно. Значительная часть их представляет собой запасные питательные вещества и продукты клеточного метаболизма. К запасным питательным веществам относятся: полисахариды, липиды, полифосфаты, отложения серы и др. Из включений полисахаридной природы чаще обнаруживаются гликоген и крахмалоподобное вещество гранулеза, которые служат источником углерода и энергетическим материалом. Липиды накапливаются в клетках в виде гранул и капелек жира. Микобактерии в качестве запасных веществ накапливают воски. В клетках некоторых спирилл и других содержатся гранулы волютина, образованные полифосфатами. Они характеризуются метахромазией: толуидиновый синий и метиленовый синий окрашивают их в фиолетово-красный цвет. Волютиновые гранулы играют роль фосфатных депо. К включениям, окруженным мембраной, также относятся газовые вакуоли, или аэросомы, они снижают удельную массу клеток, встречаются у водных прокариот.

Нуклеоид - ядро у прокариот. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК, которую рассматривают как одиночную бактериальную хромосому, или генофор.

Нуклеоид у прокариот не отграничен от остальной части клетки мембраной - у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий - на мезосоме. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро - дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки.

Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы - плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации

Некоторые бактерии в конце периода активного роста способны образовывать споры. Этому предшествует обеднение среды питательными веществами, изменение ее рН, накопление ядовитых продуктов метаболизма.

По химическому составу различие спор от вегетативных клеток состоит лишь в количественном содержании химических соединений. Споры содержат меньше воды и больше липидов.

В состоянии споры микроорганизмы метаболически неактивны, выдерживают высокую температуру (140-150 °С), воздействие химических дезинфицирующих веществ и длительно сохраняются в окружающей среде. Устойчивость к высокой температуре связана с очень низким содержанием воды и высоким содержанием дипиколиновой кислоты. Попадая в организм человека и животных, споры прорастают в вегетативные клетки. Окраску спор производят специальным методом, который включает предварительное прогревание споры, а также воздействие концентрированных растворов красок при высокой температуре.

У многих видов грамотрицательных бактерий, в том числе у патогенных (шигеллы, сальмонеллы, холерный вибрион и др.) существует особое приспособительное, генетически регулируемое состояние, физиологически эквивалентное цистам, в которое они могут переходить под влиянием неблагоприятных условий и сохранять жизнеспособность до нескольких лет. Главная особенность этого состояния заключается в том, что такие бактерии не размножаются и поэтому не образуют колоний на плотной питательной среде. Такие не размножающиеся, но жизнеспособные клетки получили название некультивируемых форм бактерий (НФБ). Клетки НФБ находящиеся в некультивируемом состоянии, обладают активными метаболическими системами, в том числе системами переноса электронов, биосинтеза белка и нуклеиновых кислот, и сохраняют вирулентность. Их клеточная мембрана более вязкая, клетки обычно приобретают форму кокков, имеют значительно уменьшенные размеры. НФБ обладают более высокой устойчивостью во внешней среде и поэтому могут переживать в ней длительное время (например, холерный вибрион в грязном водоеме), поддерживая эндемическое состояние данного региона (водоема).

Для обнаружения НФБ используют молекулярно-генетические методы (ДНК--ДНК-гибридизация, ЦПР), а также более простой метод прямого подсчета жизнеспособных клеток.

Для этих целей можно использовать также методы цитохимические (образование формазана) или микроауторадиографии. Генетические механизмы, обусловливающие переход бактерий в НС и их реверсию из него, не ясны.

Особенности строения бактериальной клетки. Основные органеллы и их функции

Отличия бактерий от других клеток

1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.

2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.

3. В бактериальной клетке отсутствуют аппарат Гольджи, эндоплазматическая сеть, митохондрии.

4. Роль митохондрий выполняют мезосомы – инвагинации цитоплазматической мембраны.

5. В бактериальной клетке много рибосом.

6. У бактерий могут быть специальные органеллы движения – жгутики.

7. Размеры бактерий колеблются от 0,3–0,5 до 5-10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.

В бактериальной клетке различают:

1) основные органеллы:

а) нуклеоид;

б) цитоплазму;

в) рибосомы;

г) цитоплазматическую мембрану;

д) клеточную стенку;

2) дополнительные органеллы:

а) споры;

б) капсулы;

в) ворсинки;

г) жгутики.

Цитоплазма представляет собой сложную коллоидную систему, состоящую из воды (75 %), минеральных соединений, белков, РНК и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.

Нуклеоид – ядерное вещество, распыленное в цитоплазме клетки. Не имеет ядерной мембраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране. Содержит около 60 млн пар оснований. Это чистая ДНК, она не cодержит белков гистонов. Их защитную функцию выполняют метилированные азотистые основания. В нуклеоиде закодирована основная генетическая информация, т. е. геном клетки.

Наряду с нуклеоидом в цитоплазме могут находиться автономные кольцевые молекулы ДНК с меньшей молекулярной массой – плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.

Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц – 30 S и 50 S. Рибосомы отвечают за синтез белка. Перед началом синтеза белка происходит объединение этих субъединиц в одну – 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.

Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.

Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ. К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: